

The	UX	Reader

Insights on process and purpose from MailChimp’s User

Experience team

©	2014	MailChimp

TABLE	OF	CONTENTS

Introduction

Collaboration

Research

Design

Development

Refinement

Resources

Contributors

Introduction

Here at MailChimp, we like to show our work—and magical

things seem to happen when we do.

It forces us to reflect. “Let’s see. How did I do that? And why is

that the best way? Oh!”

Reflection helps us see the best parts of our process. “We saved

ourselves so much time when we built it that way.”

Sharing the best parts of our process sparks conversations.

“You did it that way? Interesting. Why?”

These conversations keep us humble. “You know, you’re right.

We probably could’ve done that differently.”

And by remaining humble and open to new ideas, we grow. “We

used to do it this way, but after some consideration and lots of

experimentation, we discovered that there’s a better way.”

We show our work, hoping to get better at what we do. This

book is the embodiment of our quest to reflect, refine, and

grow. We made it in hopes it’ll help you do the same.

But there’s another reason we made this book: It gives us an

opportunity to walk a mile in our customers’ shoes.

In 2013, we started the UX Newsletter as an excuse to use the

MailChimp app on a regular basis. It helped us see countless

things we could improve, and the refinements came fast. Now

we’re taking our little experiment further by creating and

connecting an e-commerce site to MailChimp, just like so many

of our customers have done.

Incidentally, the revenue from this book won’t land in our

pockets, but will go to RailsBridge. We love their commitment

to increasing diversity in the tech world by teaching women and

people from other underrepresented groups to code. And it’s

especially gratifying to see our efforts to improve our own work

do the same for others.

Longtime UX Newsletter readers will recognize in this book

some of our most popular articles, refined and given new life.

But this isn’t just a greatest hits collection. We’ve peppered

new content throughout, and the resources section at the end

will serve as an evergreen reference as you hone your own

practice.

http://www.railsbridge.org/

Our perspective on user experience design is reflected in the

organization of the book. We start with an examination of

collaboration and teamwork. The troika of UX follows: research,

design, and development. We conclude with a selection of

articles on refinement and other processes that never really

end.

As you read, you’ll surely have questions, observations, and

feedback. In fact, we’re counting on you to get in touch and

share your perspective. Really. We’re staring at our inbox right

now.

We’re showing you our work, work that we love. If it informs

your work, even in a small way, we’ll be delighted.

Aarron Walter

Director of UX at MailChimp

http://theuxreader.com/password

COLLABORATION

Building	a	UX	Team
Aarron	Walter

Collaboration	by	Design
Aarron	Walter

All	Hands	on	Deck
June	Lee

Asking	for	Help
Fernando	Godina

On	Good	Terms
Gregg	Bernstein

COLLABORATION

Building	a	UX	Team
AARRON	WALTER

“User experience” is such a nebulous term. The UX container

can hold almost any discipline: research, design, development,

even customer support. So how do you put together an effective

team when the profiles of the members are so vastly different?

Back in 2008, when the MailChimp UX team was just me, I had

to be a generalist. I designed UIs, wrote front-end code, built

prototypes, interviewed customers, and conducted usability

tests. Working on so many different things early on helped me

see how it all fits together and shaped my views of the type of

UX team I wanted to build.

I knew I wanted to grow a team of thinkers and makers. At big

companies, UX teams often focus on wireframes and workflows

but don’t have the power to design or build the UI. Things get

lost in translation as ideas are passed to other departments. A

team filled with specialists but no generalists creates silos and

division, which lengthens iteration cycles, causes entropy and

confusion, and absolutely pollutes the user experience. I

wanted to build a team of generalists with a broad vision of the

user experience and specialists that could hone in on the

details.

Over the past 6 years, my team has grown slowly and

methodically. I brought on someone to design, then someone to

code, then someone to run usability tests, and on and on. But

they weren’t just “someones”—they were folks who could

contribute, inspire, and thrive. We’re small by design, just 12

people strong. We have 4 design researchers, 2 UI designers, 4

front-end developers, 1 expert HTML email designer/developer,

and myself. Small teams make communication easier and leave

no room for dead weight. Collaboration is easier when you know

you’re working with smart, capable people.

When I think back on how we’ve grown, I can derive a few key

lessons about building a sharp UX team. These lessons aren’t a

magic formula, but by combining a bit of rigor with a lot of

intuition, we’ve been able to get a lot done with relatively little.

Easy	to	hire,	hard	to	fire
Hiring is hard. It sucks up so much time, and it often feels like

you’ll never find the right person for the job. But it’s the most

important task of anyone building a team, UX or otherwise. And

that’s because it’s easy to hire someone who’s mediocre, but

it’s really hard to fire them.

Mediocre people are a drag on quality and morale, but they tend

to do just enough good work to stick around—managers have a

tough time justifying letting them go because there’s no

actionable offense. The scent of mediocrity on your team can

also scare off talented candidates. Mediocrity is an albatross we

tether ourselves to when we don’t give the hiring process our

full attention.

When you hire, look for skill fit, but don’t make it your primary

evaluation criteria. Look for passion, curiosity, selflessness,

openness, confidence, communication skills, emotional

intelligence, and intrinsic motivation, too. These things can’t

be taught—most skills can.

It sounds a bit nebulous, but I always look for the right energy

fit too. I once interviewed a candidate and knew from his

crushing handshake and deafening greeting that he would be

too overbearing for my team. As the interview proceeded, my

hunch was borne out. This guy’s alpha energy would instantly

squelch the open collaboration on my team. We spend more

time with our colleagues than we do our families. Why wouldn’t

we listen to our gut when deciding who to hire?

When building a new UX team, your instincts might draw you to

industry rock stars. Unfortunately, these folks often struggle to

collaborate and can intimidate colleagues, however

unintentionally. When hiring, ask yourself, “Can this person

say ‘we’ instead of ‘me’? Can they let someone else have the

glory? Can they put in their best work, then relinquish control

to someone else to take it further?” If yes, you’ve got a strong

candidate worth considering.

Respect
Seeing your work mistreated can be demoralizing. Researchers

throw themselves into studies that uncover insights that can

change a company, but their findings go unheeded. Designers

labor over pixel-perfect UIs, but the build-out cuts corners.

Developers write brilliant code, but the release gets spiked. You

probably have a few similar stories of your own—it’s the stuff

that resignation letters are made of.

This dynamic is bad for individuals, bad for teams, and bad for

the companies they serve. So why does it happen? Simple: A

lack of respect between peers.

Respect comes from taking time to understand one another and

our individual areas of expertise. Specialists who have mastered

their craft are ineffective if they don’t have a general

understanding of how their contributions relate to those of

their colleagues. Great designers need to understand

engineering enough to empathize with, listen to, and respond

to the people who build what they design. Great developers see

value in making an app as usable as it is powerful, and they’re

willing to go the extra mile to make the UI a little more elegant,

a little more efficient for users.

Respect fosters a can-do attitude. When colleagues value one

another, they're more open to sharing ideas, even not-so-great

ones. We could do a lot better if we started with “Yes, and...”

instead of “No.”

http://www.jesterzimprov.com/fundamental-improv-principles/

Respect between design and development is the most critical

ingredient in making great products, but it rarely happens

organically. It has to be a core value of a company,

demonstrated daily by leaders.

Autonomy
Even if they operate in a respectful environment, teams can

become demoralized when they have to beg for permission. It’s

hard to experiment if you have to get sign-off first, and it’s

hard to make giant leaps forward if you don’t experiment. If

failure is not an option in your organization, then neither is

success.

Teams need autonomy to make decisions quickly, to follow their

gut, to explore. Autonomy empowers people to do their best

work on tight deadlines and with limited resources. You have to

hire great people, provide vision, then get the hell out of their

way. And to do that, you have to trust each other.

Our MailChimp UX team is tiny, but our size isn’t a shortcoming

—it’s an advantage. Communication is easier when teams are

small. We’re able to make plans quickly, then get back to

making. Each little team has the autonomy to make decisions

about their own work, and when there’s uncertainty, they

discuss with another autonomous team that can provide more

definitive direction.

There’s a balance to be struck, though: Absolute autonomy can

lead to chaos. Though each team operates independently, we

never forget that we’re part of a larger organism. Our decisions

often affect the work happening elsewhere. So when big

decisions need to be made—like when we redesigned the

MailChimp app—team autonomy has to give way to the

perspective of the whole company.

Meetings are often vilified, but there’s great value in short,

regularly scheduled check-ins. Individual members of

autonomous teams need to be aware of their colleagues’

activities. A quick round-table report of what everyone’s

working on creates opportunities to collaborate and inform.

Brief chats in the hallway or by the espresso machine are also

effective at keeping people moving on a common trajectory.

These are common occurrences around the MailChimp HQ.

Parallel	cycles

Lean and Agile methodologies are the religion of technology

companies trying to gain competitive advantage by iterating

quickly on their products. The problem is, fast iteration too

often happens at the expense of research. Things get done fast,

but they’re not always the right things.

The MailChimp team is agile and lean, but in lowercase. We

believe in many of the tenets of these methodologies, but we’ve

never been keen on dogma. “Move fast and fix things” pretty

much sums up our approach.

For a while we tried to tie one research workflow to the 5 week

release cycle followed by our UI design, front-end devs, and

engineering teams. That works OK when doing usability testing

to find refinement possibilities, but it greatly restricts deeper

studies. The design research team is often engaged in long-

term studies about key issues that might shape company

strategy or make us rethink pieces of the app. This work

requires lots of customer interviews, surveys, ethnographic

research, and—most of all—time. The cycle for deep research is

considerably longer, and happens parallel to the rapid cycles of

app development.

http://uxdesign.smashingmagazine.com/2011/03/07/lean-ux-getting-out-of-the-deliverables-business/
http://en.wikipedia.org/wiki/Agile_software_development

Though the 2 cycles operate autonomously, the teams’ work has

to remain connected. Research that goes unapplied is of little

value. So the research team shares salient insights with

designers and developers as they find them, rather than waiting

for months to report back. And they don’t do this expecting

immediate action, just to offer context and meaning for the

work already underway.

When big studies are completed, we talk about how to fit

recommendations into our overall roadmap. Having in-depth

research continually trickling into rapid iteration cycles helps

ensure that we’re not only moving fast, but that we’re also

moving in the right direction.

Create	a	culture	of	empathy
Making new features is fun. Fixing bugs and refining workflows

is not. But to make a great product, you have to do both with

equal measures of enthusiasm.

Refinement requires motivation and, for a UX team, nothing is

more motivating than watching users struggle with your app.

From time to time we invite users to the MailChimp office to

conduct usability tests. The UX, engineering, and QA teams

watch real customers doing real work in MailChimp, and we

squirm in our seats when they struggle. The outcome of these

tests is always the same: We’re made so uncomfortable on their

behalf that we’re compelled to make things better immediately.

We also do remote usability testing, conduct customer

interviews, answer some support-related tweets, and read

thousands of account closing surveys and customer feedback

emails. The research team is largely responsible for this sort of

work, but even the front-end devs visit customers in person to

watch them use the app.

As your customers’ experiences become more visible, your team

will become more empathetic. They’ll not only be motivated to

refine, they’ll do it with speed and passion, and without being

asked.

Tell	stories
When we started to fold design research into our UX practice, I

thought it was enough to collect the findings and make

recommendations. But I was wrong. Research can’t create

change in an organization until it has been turned into a

compelling story.

MailChimp has been known to write 50 page documents filled

with interesting insights about our customers and how they use

our app. It’s stuff that can help us make a better product—and

could even shape the direction of the company. But very few

people are willing to pore over giant tomes of research. It’s time

consuming, and it’s not much fun. So we thought, while we’re

on a quest to understand how to make our customers’

experience better, why not do the same for our colleagues?

We’re experimenting with creative ways to turn high-level

findings into posters, videos, and elegant web page layouts. In

these forms, our research can be grokked in seconds and shared

easily between teams. Research is much more influential when

it’s made accessible to others.

Keep	going
I’ve been working on building and managing a UX team for

years now, and I still don’t have everything figured out. It

always seems like there’s some magic formula just around the

bend, and from what I’ve heard from UX team leaders at other

companies, I’m not the only one out here looking for it. But

maybe, just maybe, that formula doesn’t exist. There’s no one

way to describe “user experience,” so why would there be one

way to build and manage a UX team? Getting research, design,

and development to operate in harmony is what our ambiguous

craft is all about. This much I know for sure: When smart,

capable people with complementary skills are united by a deep

desire to help customers, great things happen.

COLLABORATION

Collaboration	by	Design
AARRON	WALTER

A few summers ago I visited the Stanford d.school to give a

guest lecture to Enrique Allen’s d.media class. Students were

busy working on prototypes, gathering feedback, and iterating

—it was a classroom with the spirit of a startup.

During my lecture, an attentive audience sat on chairs and

couches scattered around the room. Afterwards, the seating was

rolled out to the perimeter of the room and small tables were

rolled in for collaborative conversations about student work. I

was struck by how the dynamic of the room and the behavior of

its occupants changed quickly and effortlessly along with the

furniture.

http://dschool.stanford.edu/
https://twitter.com/EnriqueAllen
http://dschool.stanford.edu/dmedia/

As the class wrapped up, co-instructor Scott Doorley gave me a

copy of his book Make Space, which details his methods for

creating collaborative spaces. As it turns out, the flexibility of

the classroom was no accident. Scott told me they’d been

experimenting with ideas to improve the program’s learning

experience and teach students how to think more creatively

through the design of spaces.

He took me on a tour of the school, showing me spaces for

ideation, productivity, and quiet reflection. The artifacts of

creative thinking were plastered all over the walls and scattered

throughout rooms. It was clear that ideation and collaboration

were ingrained in student work—not only through the design of

the curriculum, but also because of the design of the physical

space.

The experience changed the way I think about workspaces. And

the timing couldn’t have been better: Back home in Atlanta,

Ron Lewis, our creative director, and Mark DiCristina, our

marketing director, were hatching plans for a new, unified

design studio.

Designing	the	MailChimp	studio

https://twitter.com/scottdoorley
http://www.amazon.com/Make-Space-Stage-Creative-Collaboration/dp/1118143728/
http://designlab.mailchimp.com/
https://twitter.com/markdicristina

Ron was already doing some research of his own, visiting

startups and design spaces in the Southeast to collect ideas that

might influence our plans. After much debate, Ron, Mark, and I

arrived at a core set of principles that shaped the design of our

studio, and in turn, how we collaborate.

1.	COMMINGLE	AND	CROSS-POLLINATE

Because collaboration was our central motivation for creating

the new studio, we carefully considered the seating chart.

Between our teams we have design researchers, writers, graphic

designers, photographers, illustrators, developers, and

interaction designers. It’s a diverse set of skills and

personalities that make up this creative soup.

We put everyone in a wide-open space on the office's fourth

floor. Rather than segregate the teams, we mixed people up. We

looked for complementary skills and personalities, then

positioned accordingly. We put analytics people next to design

researchers, UX front-end devs next to marketing devs, and

designers next to writers. Commingling across disciplines

encourages us all to look at projects from different

perspectives. Regardless of what we each do day in and day out,

it’s all connected and equally important.

2.	FACILITATE	MOVEMENT

Sitting still for hours on end not only atrophies muscles, it

softens minds. So we made our workspace open and filled it

with desks, couches and standing tables to make it easy for

people to move around and collaborate, or just to get a change

of scenery.

Our open workspace also provides a landing place for smart

designers who pass through Atlanta and need a place to be

productive. James Victore, Dan Benjamin, Brad Frost, and many

more have dropped by our studio and claimed a spot for a few

hours. We love the energy and ideas guests bring to the studio

—it keeps us inspired.

3.	LET	IDEAS	HAPPEN	EVERYWHERE

Ron visited The Iron Yard and CoWork in Greenville, South

Carolina, and loved the Polygal walls that defined the office’s

workspaces and served as giant whiteboards. We borrowed that

idea when we built our studio. And we’ve discovered that, when

the tools are always at hand, people are more apt to draw out

their ideas together for all to see. It’s a great way to encourage

collaboration.

https://twitter.com/JamesVictore
https://twitter.com/danbenjamin
https://twitter.com/brad_frost
http://www.theironyard.com/cowork
http://polygal.com

We combined the Polygal idea with another we discovered at

the Stanford d.school. The rolling racks you find near dressing

rooms at clothing stores can easily be retrofitted to hold a sheet

of Polygal, creating a movable whiteboard. We roll them

together to define space for creative exploration, then move

them back into place when it’s time to build out our ideas.

4.	CREATE	CONVERGENCE

We also have a common space for lunching and chatting where

we all converge throughout the day. The heart of this space is a

fancy coffee bar where we craft caffeinated indulgences on a

LaMarzocco Linea. Great coffee draws in not only the designers,

but folks from throughout the entire company. We see

engineers, accountants, support staff, and everyone in between

pulling shots at the espresso machine, so there’s always an

opportunity to find out what other departments are up to.

Convergence points like this keep a company connected, as our

senior design researcher Gregg Bernstein wrote in his recent

article in UX Mag. All of these design choices were made to

encourage connections and conversations that lead to deeper

collaboration. They might seem like frivolous extras, but we’ve

http://www.lamarzocco.com/index.php?option=com_content&view=article&id=79&Itemid=480&lang=en
http://blog.mailchimp.com/author/gregg_b/
http://uxmag.com/articles/collaboration-experience

found that expenditures on anything that encourages

convergence quickly pay for themselves.

5.	CREATE	RETREATS

Of course, there are times when large open spaces filled with

inspiring conversations can be a distraction. So we furnished a

few offices near the design studio with desks and chairs to give

people a place to hole up if they need to have a private meeting,

take a phone call, or just work in silence. We want to keep our

teams working together in the same space, but let them adjust

their work space as needed to be as productive as possible.

Flexible	spaces,	fuzzy	teams
It’s not hyperbole to say our new design studio has changed the

way we work. Walls divide minds as much as spaces, and when

the UX, design and marketing teams worked in separate spaces,

we collaborated only occasionally. These days, the lines

between teams are so fuzzy that outsiders would have a hard

time telling us apart.

Cross-disciplinary discussion is a daily occurrence now. Writers

talk to interaction designers, photographers talk to design

researchers. We’re all talking to each other and making our best

work because of it. We’ve always known that making the best

digital products requires a deep synthesis of skills, but now

we’re living proof.

COLLABORATION

All	Hands	on	Deck
JUNE	LEE

All established cultures have defining moments or rites of

passage where current members welcome new members

through shared experiences. These initiation rituals foster a

deep sense of camaraderie and a dedication to fulfilling shared

goals. For many folks here at MailChimp, myself included, that

rite of passage was our time spent on our support team.

Our support agents train together for extended periods of time,

work closely with mentors, and put in long hours together—

kind of like rushing a fraternity, without all the beer-

funnelling.

With 7 million users—and with thousands of new customers

added per day—MailChimp’s support staff is growing all the

time. This has been useful on a few fronts: It means we have

readily available customer service, which means happier

customers. And it means we have a direct pipeline of

experienced, dedicated talent. So when other departments—

like UX or partnerships—need to fill a position, we can begin by

looking within our support ranks. (This was my path to UX

research.)

Recently we saw a rush in the number of customers awaiting a

chat or email response from our support team. This made us

nervous, as it’s important to respond to requests as quickly as

possible. But with a flood of new support staff joining our ranks

around the same time, we had a chance to introduce them to

the MailChimp community by organizing an “all hands on

deck” day. All available support agents, along with former

chimps now working in different departments, were invited to

join together one Saturday to answer customer emails.

It was a work day, but it felt more like a great big family

reunion. Former deskmates reunited to achieve a common goal.

Breakfast, lunch, and child care were provided, but were

considered extras in the minds of the MailChimp employees. All

of them gathered to help the company and their colleagues.

As MailChimp grows, it’s important for us to retain the

community-based values we had when we were smaller. The

social aspect of our culture is something we invest in: We host

regular company-wide lunches (nacho bar!) and after-work

socials, and we have common areas with ping pong tables, pool

tables, and snacks.

All of these are fun and cherished parts of our company

identity, but there’s a special kind of energy generated from an

all-hands event. When the queue hit zero at the end of the day,

there were high fives all around and “You’re The Best Around”

rang through the office. Few things bring people together like

working toward a common goal and meeting it.

http://www.youtube.com/watch?v=cr6dLC7BOLM

COLLABORATION

Asking	for	Help
FERNANDO	GODINA

MailChimp is made of people with diverse backgrounds. We

have advanced degrees; we’re self taught. We’re biologists,

advertisers, rhetoricians, industrial designers, painters, and

poets. We come from all over the globe and speak dozens of

languages. These differences are our primary strength. Our

diverse perspectives give us an array of knowledge and

experiences to pull from when we’re collaborating. If there’s

one thing we have in common, it’s that we’re all deep thinkers

who enjoy trying to solve several problems at once.

These are things I’ve always known, but a while back I saw

first-hand how our diverse skills contribute to a collaborative

workflow. The UX team was working together on 3 different

projects with looming deadlines. The research team was

working on parallel studies that required sophisticated surveys

and emails to thousands of customers. The design and

development teams were busy crafting the next issue of our UX

Newsletter, and the research team was jumping in to help. We

were hustling to get these projects done, but obstacles kept

popping up that we couldn’t solve on our own. The only way we

were going to meet our deadlines was to ask for help.

Passing	the	baton
While working on a study of our Mandrill customers, fellow

design researcher Laurissa Wolfram-Hvass and I were

struggling to figure out the right way to inject merge tags into a

survey email. We needed the merge tags to pass customer

information from MailChimp into our SurveyMonkey data. But

we couldn’t get it to work quite right. Instead of pounding our

heads on our desks, we asked some of our fellow researchers to

lend a hand. They took a few moments to test the emails for us,

and eventually the metadata we needed to pass from

MailChimp over to SurveyMonkey was working.

Later, we were ready to send our survey email to thousands of

customers when we noticed some coding issues with our

template. A few people from our team jumped in to help, but in

http://mandrill.com/
https://twitter.com/laurissawolfram
http://kb.mailchimp.com/article/all-the-merge-tags-cheatsheet

the end we had to call in our email developer, Fabio Carneiro, to

sort things out. What was difficult for us was mere seconds of

work for Fabio. We would have burned precious time had we

continued to pound on a problem that was outside our area of

expertise. By passing the baton to a colleague with the skills to

solve the problem, we kept the project moving and ended up

with better results.

Meanwhile, the rest of the UX team was working on an issue of

the UX Newsletter, and the articles needed edits before sending.

A researcher and a designer dove right in to refine and smooth

out a few bumpy narratives. We still shipped with one mistake,

but hey, we’re only human.

When every member of the UX team contributes in their own

way, tasks moved fluidly between us. We have confidence in the

abilities of our colleagues, so we know that when a task is

passed to a peer, it will get done—and this makes work easy,

elegant, and fun.

No	islands
As we worked on 3 parallel projects that day, 2 important skills

empowered our team: communication and collaboration.

http://blog.mailchimp.com/author/fabio_c/
http://us5.campaign-archive1.com/?awesome=no&u=7e093c5cf4&id=b3ccb900e7
https://twitter.com/MailChimpUX/status/421702102893608960

Whenever someone had a question, they would IM other team

members to find an answer or walk up to their desks and start a

conversation. In return, each question was met with an open

and honest response and a willingness to help. Even while

working on another task, colleagues made a point to respond in

a few minutes—and if they didn’t have an answer they’d pass it

on to someone who did. No matter the situation, there was

never a dead end. We always kept projects moving forward.

Each member of the UX team has their area of expertise, but no

one is an island. Of course, this dynamic isn’t limited to our

team. It happens throughout MailChimp, within and between

all teams. Thanks to our multidisciplinary, collaborative

approach, we know we can tackle hairy problems concurrently,

and that our individual weaknesses are mitigated by our

collective strengths. When it comes to making MailChimp

better, we never hesitate to ask for help.

COLLABORATION

On	Good	Terms
GREGG	BERNSTEIN

An attorney, a writer, a front-end developer, a designer, and a

researcher walk into a room… Sorry, this isn’t a bad joke, just

the story of a collaborative effort to rethink MailChimp’s Terms

of Use.

Traditionally, legal documents have been drafted to protect

clients and minimize risk, not facilitate ease of use. But that

tide is turning. Recently, changes some companies have made

to their terms of use have fomented outrage and confusion

among users, more generally pushing agreements towards

clarity and friendliness.

At MailChimp, we put a lot of thought into every piece of user-

facing content. And in 2013, MailChimp writer/editor Kate

http://mailchimp.com/legal/terms/
http://www.theverge.com/2012/12/20/3790560/instagram-new-terms-of-service-from-overreaction-to-retraction
https://twitter.com/tos
http://blog.mailchimp.com/author/kate_l/

Kiefer Lee and attorney Valerie Warner Danin agreed it was time

to give the same amount of consideration to our Terms of Use.

And so a team including UX, legal, and marketing folks began to

hash out a plan for legal documents across the MailChimp

family, including TinyLetter and Mandrill.

We all brought something different to the table. My goals for

user experience focus on clarity and ease of use; meanwhile,

Valerie serves to protect the company, and Kate seeks to

achieve the proper voice and tone. But after working together

and questioning everything in our then-current Terms of Use,

we created some guidelines to suit everyone: the terms needed

to be clear, strike the right tone, cover our legal bases, and

provide a considerate user experience.

Here’s how we made it work.

Use	plain(-ish)	language
It was important to all of us that we write the terms as if they

were meant for other humans to read—because they are. To be

sure, some legal terms, like “represent and warrant,” are so

specific and protective that, to ensure their validity, they must

http://blog.mailchimp.com/author/valerie_d/
http://voiceandtone.com

be used. But Valerie and Kate worked to cut all the unnecessary

“wherefores” and “hereunders.”

Writing in plain language also meant veering away from the

humor sprinkled elsewhere on our site. Legal terms are serious

business, and we had to consider the perspective of our

customers. If someone is visiting a legal page, they likely want

information, not jokes or silly links.

Maintain	legibility
In the interest of avoiding the trappings of typical legalese (and

our previous Terms of Use), we refrained from capitalizing

entire sentences and paragraphs. By now, we all have a visceral

reaction to all-caps emails or tweets (“AGH, STOP YELLING AT

ME!”). Surely a legal document can provide a safe haven from

such gauche behavior! When we had to emphasize entire

sections, we bolded them instead.

We also set our type large enough to be read comfortably,

generously spaced paragraphs, and used bullets and numerals

to improve readability. This wasn’t rocket science, just good

form.

http://freddiesjokes.com

Chunk	the	content

By organizing the content into intuitive groupings, we imposed

hierarchy on the legal documents. Our readers can now refer

back to specific sections, rather than searching through an

entire body of text. It’s one of those things that doesn’t add

much at first glance, but becomes very handy when a user is

faced with an important task—like determining who owns their

content. We had already separated our Terms of Use, Privacy

Policy, and Copyright Policy, and we further separated our

Acceptable Use and API Use policies for ease of reference and

navigation, as these are areas where our customers look most

often.

Taking things a bit further, we created an entire Legal landing

page, which serves as a hub for all legal-related MailChimp

matters.

Lend	a	helping	hand
Even after making our language plainer and our text more

legible, we still saw areas that readers might find a bit vague. To

remedy this, we provided helper text in the sidebar. The goal of

the sidebar isn’t to summarize the terms, but to give context for

a particular provision. In some cases, the helper text shares a

concrete example of what we’re talking about, like our Email

Genome Project.

http://emailgenome.org

In other cases, the helper text explains tricky legal terms.

With those guidelines established, we extended our circle of

collaborators to include MailChimp’s art director, David

Sizemore, and front-end developer Steven Sloan. David was

charged with developing a design system for the different

sections of the Legal landing page, which he accomplished with

iconography. Steven experimented with various methods of

disclosing helper text, ranging from popovers to the sidebar

text we ultimately went with.

The number of visitors to a website’s terms of use page will

pretty much always be small. But just because less people will

see a page doesn’t mean it deserves less care. In the end, our

motley, cross-disciplinary team collaborated together to

http://blog.mailchimp.com/author/david_s/
http://blog.mailchimp.com/author/steven_s/
http://mailchimp.com/legal/

transform a suite of almost totally unreadable documents into

something inviting and accessible, providing our users with a

carefully-considered—and illuminating—experience.

RESEARCH

Radicalizing	Data
Gregg	Bernstein

Sharing	Research	by	Every	Means	Necessary
Laurissa	Wolfram-Hvass

We	Sorted	506,000	Data	Points	and	Lived	to	Tell
Fernando	Godina,	Laurissa	Wolfram-Hvass

The	Open-Minded	Interview
Steph	Troeth

RESEARCH

Radicalizing	Data
GREGG	BERNSTEIN

A popular corollary in design and writing posits that by

emphasizing everything, you end up emphasizing nothing. As a

researcher at MailChimp, though, I’ve learned that my team

can uncover meaningful and unique insights by flipping that

idea on its head. We start with the premise that everything is

important, and that every data point tells a story. By listening

to all of these stories, then following them until they become

epics, we achieve a mastery of our data sets and an ability to

focus, prioritize, and emphasize. We’ve radicalized our data,

allowing it to dictate the direction and scope of our research.

Dumb	yourself	down

To radicalize data is to become subservient to it, no matter the

form. At MailChimp, we draw from a number of research

channels: unsolicited email feedback, surveys, interviews,

usability testing, and analytics, to name a few. By purposefully

not making assumptions about what our research should

uncover, we empty our minds of preconceived ideas and open

ourselves to the data.

It’s like we’re unleashing our inner Columbo. Embracing

befuddlement, we assume that everyone else is an expert and

that every sentiment carries weight, and we trust that from this

process the patterns and hierarchies will emerge.

We receive emails every day from customers with suggestions

and complaints about MailChimp, and we read every single one.

Why? Because we assume this data is important and that our

customers know far more about using our app than we ever will.

If we’re building for our customers, who better to learn from

than them?

Last year an email came through our app feedback channel that

requested a “Notes” function within our subscriber profiles. It

was the first and only time we saw this request, but we didn’t

http://en.wikipedia.org/wiki/Columbo

discount it outright—it was data, and therefore important. We

responded to the customer directly, learned of the use case, and

this one piece of feedback turned into an app development. The

data we received was minimal, but by granting it legitimacy by

default, we learned something new and added a feature with

potential benefit for all customers.

We take this same approach with our customer interviews.

Once our data points us in one direction—towards the realm of

e-commerce, let’s say—we visit customers to learn more about

the topic and how it affects them individually. We don’t barge

in and ask, “Can you tell me about e-commerce and how it

relates to your use of MailChimp?” Instead, we take the long

view and ask about users’ typical and atypical days, how they

develop their products, or what brought them into their

particular line of work.

By focusing on narratives and tangents, we gain insight that

lends context to our original data sets. This is analogous to the

“switch” methodology espoused by The ReWired Group:

Customers hire products to perform a task, and our job as

researchers is to uncover everything that influenced that

choice. When we attribute expert status to our customers, we

http://www.therewiredgroup.com/

open ourselves up to empathizing with their situations and

rationales.

Then	wise	up
Of course, for every piece of data you follow, there always comes

an end point. We complete our research mantra by claiming

that each data point holds value until proven otherwise. Once

we see enough evidence to contradict the data in question, we

move on.

Here’s an example: A while back, through our feedback

channels, we saw data that seemed to suggest it was too easy to

inadvertently unsubscribe from a mailing list with errant clicks.

But once we looked more closely at the data (examining who

provided it, the frequency and the rationale) we determined

that this wasn’t necessarily a point worthy of further research

and development. We could empathize with the feedback, but

the use cases in question did not add up to a development that

would improve our app—instead, it would appease just a few

users and possibly upset even more.

By radicalizing our data, every data point comes to represent

continuing education about our products and customers. With

this principle firmly in mind, we can follow every lead and know

that, even if proven unimportant, our research time was well

spent.

RESEARCH

Sharing	Research	by	Every	Means
Necessary

LAURISSA	WOLFRAM-HVASS

Good research takes time and effort! Our research team spends

days setting up tests, coming up with survey questions and

interview prompts, tweaking protocols, scheduling

participants, and running pilots. Research studies can take days

or weeks to complete—and let’s not forget all the time it takes

to re-watch video footage, transcribe interviews, filter through

responses, conduct follow-up interviews, and pull out

meaningful statistics.

But what happens after that? How do we move from the

reflections of research to the actions of development? How do

we transform all of our hard-sought insights into accessible

knowledge we can use to improve our products or services?

No matter how methodologically sound, relevant, or interesting

it may be, user research is essentially worthless if it’s not used

to influence improvements to our products or services. One of

the most important parts of a researcher’s job is making sure

findings get to the people who need them to make decisions.

This means translating findings and sharing them with

designers, developers, marketers, writers, and support staff—

anyone involved in constructing and influencing our users’

experiences.

A research report is the most common way to share findings

and insights. Reports have their place, but they tend to be long,

dense, and usually require more time to read (and write) than

most people are willing to commit. So here at MailChimp, we’ve

been experimenting with other ways to share research with the

company beyond printed reports. There’s no perfect

communication method, of course. But each of the channels we

use serves a different purpose.

Posters

In 2013, we made persona posters. The UX team spent months

developing a group of “personas” that represented our primary

customer types. We wrote a formal report that discussed each

persona in-depth, and we had our designers create posters for

each, with descriptive words that summarized each customer

type.

We hung the posters in a common area so that they might spark

conversation and remind people to consider the customers we

serve. During our major redesign last year, we taped pages

under each poster with verbatim feedback from customers who

fit within that persona type. That direct feedback, paired with

its corresponding persona, served as a visual reminder of our

users and their needs.

By nature, posters can’t offer very deep understanding, but they

can provide a snapshot—a chunk of information that can be

digested quickly.

https://blog.mailchimp.com/new-mailchimp-user-persona-research/

Coffee	Hours	and	Lunch	&	Learns
On Friday mornings, we have company-wide Coffee Hours

featuring speakers who talk about things like the creative

process, journalism, security, comedy, and design.

Occasionally, the research team takes the floor and shares some

of the insights we’ve discovered about our users. Usually these

talks focus on big trends and themes that affect our entire

customer base—which, in turn, affect our entire company.

http://mailchimp.com/about/coffee-hour/

Information from Coffee Hours is usually available to our

colleagues in other places, like a Google Drive report or in

Evernote, where a lot of our research is housed. The in-person

presentation, though, is often more dynamic and engaging than

a report—and more likely to reach a wider audience of people.

Lunch & Learns are less formal than Coffee Hours and usually

have fewer than 20 people in attendance. The research team

has used this time to invite designers and developers to watch

usability testing footage with us. These lunches are a chance for

us to get the designers, developers, and researchers together in

a relaxed setting where we can chat about design challenges and

collectively come up with solutions.

Coffee Hours and Lunch & Learns are more visual and dynamic

ways of presenting research. They cater to folks who are more

engaged when someone speaks to them directly and they have

the opportunity to ask questions or respond.

Internal	research	newsletters
On a semi-regular basis, the research team uses MailChimp to

send an internal newsletter that summarizes our current work.

Usually it’s a collection of interesting stats and numbers on a

https://blog.evernote.com/blog/2013/06/03/why-mailchimp-turns-to-evernote-business-to-get-things-done/

particular topic (like international growth rates, integrations

usage, or certain customer behaviors) paired with a brief

explanation or analysis. It’s information that’s not really

enough for a formal presentation but is still important to share

with the company. We also encourage other departments to use

this as a channel for research or insights they’ve gathered. And

we always include links or directions on where to find

additional information, if the reader wants to learn more.

Mini-documentaries
On occasion we’ve made short, 5 minute documentary videos

that give the whole company a glimpse at our customers’

everyday working lives. Seeing customers’ faces, their office

environments, and the technology they use helps us develop

empathy. Listening to customers talk about their organizations,

how MailChimp fits into their overall workflows, and what their

daily struggles are like has more impact than simply reading a

quote on a printed page. Plus, videos can be watched anytime,

paused, and replayed.

Google	Drive	reports

Though we try not to rely on reports as our sole communication

method, we do still use them. Google Drive helps us make

reports a little more collaborative, since they’re easy to share

and the comments feature facilitates asynchronous discussion.

Reports are usually read by just a fraction of the company;

they’re first shared with leads, who then might pass them

along to someone on their team if the research directly pertains

to a current project. A couple of designers and developers have

told us that reports have become a handy reference for them

when they’re working on specific projects. These reports are

packed with important information, so they do require a greater

time commitment and focused concentration. They are rich

with detail, and they can be sat with, re-read, and digested

slowly.

Research	evangelists
Each of those communication forms has its place, and the

MailChimp UX research team is learning that the best way to

reach all of our colleagues is to repeat information in different

ways through multiple channels. An unspoken part of our jobs

as researchers at MailChimp is just “being around” and

promoting research whenever an opportunity presents itself.

We keep ourselves open to those serendipitous moments when

we can contribute research tidbits to a conversation we’re

already a part of. This doesn’t mean monopolizing

conversations and droning on and on about a current study—

nobody wants to be around that person. It just means being

aware of when our research might inform the work of others.

Here at MailChimp, we try to keep the walls between teams low,

so ideas can move and flow freely throughout the company. As

researchers, we work across many different groups and can see

how the work of one team might impact another. So, when

we’re talking to colleagues, we’re in a great position to not only

share information, but foster connections. We love being able

to say things like, “Oh, you’re working on a feature that affects

e-commerce customers? The e-commerce brand manager just

met with several customers last week who mentioned some

pretty interesting struggles with that feature. She’d be a great

person to talk to.”

Keeping	research	fresh	and	minds	curious
Right now, we’re tossing around new ideas for how to keep

things fresh and share research effectively. We’ve worked with

our designers to make internal, IP-restricted websites for

reports that are more dynamic and visually interesting than

formal, long-form documents. There’s also been talk of

collaborating with our marketing team to turn some of our

research into comics that can be shared internally.

Ultimately, we want to spark conversation, get people

interested, and inspire curiosity about our users and how we

can create better products for them. We have teams of smart,

talented people working with us at MailChimp, and as

researchers, we want to empower them with information so

they can make better decisions about their work.

RESEARCH

We	Sorted	506,000	Data	Points	and
Lived	to	Tell

FERNANDO	GODINA,	LAURISSA	WOLFRAM-HVASS

Customer feedback is very important to our work at MailChimp

—it helps guide our decisions and improve our product and

process. In early 2013, we tried something new (for us) and sent

out a massive, 46-question survey. After one week, we had

received responses from more than 11,000 customers. That’s

506,000 pieces of feedback! And we had to go through them all.

Fernando:	Sorting	the	results
The answers to the multiple choice questions were fairly easy to

analyze. SurveyMonkey has some nifty tools that let us filter

the data based on responses to specific questions, so we could

http://www.surveymonkey.com/

chart mobile device usage based on size of company or see

which industries reported collaborating in teams the most.

We also asked our chief data scientist, John Foreman, to do

some data digging to find valuable insights. He shared with us

the magic of Excel pivot tables, but that’s a story for another

day.

The thousands of unique answers to open-ended questions

were a bit harder to comb through. We approached this

feedback like a puzzle: Our job was to put the pieces together to

find bigger patterns. Instead of thinking about the responses

individually, we read through them looking for commonalities

and then categorized them. Instead of having 1,966 unique

answers to one question, we ended up with 14 buckets, each

expressing a certain type of answer.

Bucketing is a simple idea, but making it happen takes time and

concentration. Once we were done, we were able to rank-order

buckets and find answers to our open-ended questions. This

helped us quantify feedback patterns and share that

information internally.

http://blog.mailchimp.com/author/john_f/

Laurissa:	Finding	meaning	in	the	mess
Tagging and categorizing responses helps us see trends much

more clearly than if we try to identify them by reading

responses in isolation. But, as Fernando mentioned, this can be

challenging when you have thousands of responses to filter.

How do we dig through all of that data to find meaning?

While there are many different approaches to analyzing open

ended survey responses, I’m going to share a few tips for how I

move this process along using SurveyMonkey.

FIGURE	OUT	WHAT	YOU	REALLY	WANT	TO	LEARN

Before you read the very first response, remind yourself why

you conducted this survey. You’ll look at your responses very

differently if your goal is, for example, understanding how

many of your customers express frustration about a particular

feature, versus identifying commonly used workflows or

features. Regularly refreshing yourself on what you’re trying to

learn will help you stay focused and move through the data

more quickly.

FILTER	AND	CATEGORIZE

Like Fernando said, open-response questions are a great way to

gather in-depth answers—but when you have several hundred

of them, they can be a little tricky to dig through.

I’m one of those people who can’t wait to see what our

customers have to say, so I usually start by skimming through

the responses, just to ease my curiosity. But once I’ve gotten a

feel for what people are saying, my first priority is to filter out

all the responses that aren’t particularly helpful. For example, I

usually get a big handful of “n/a”s from folks who either have

nothing to say or just want to skip to the next question. I do a

quick search for “n/a” and all of its variations (none, na, n.a.,

nada, nope) and categorize them in SurveyMonkey with a tag,

something like “Unanswered” or “Nothing.”

After those are cleaned out, I start skimming through the

responses for obvious patterns and keywords that I can use as

search terms. Depending on what I need to learn, this can be a

MailChimp feature (template, user profile, autoresponder),

common task (importing, segmenting, syncing), or software

(Excel, EventBrite, CRMs). SurveyMonkey does all the hard

work for me by searching for responses with these keywords,

listing all the responses together, and highlighting the search

term in each. From there, I can select multiple responses and

categorize them all at once.

SurveyMonkey’s text analysis tab can also identify common

themes or patterns—it pulls out the most common words used

across responses and displays them as a word cloud. These

words aren’t always very useful, but sometimes text analysis

uncovers a few gems.

I can usually categorize several hundred responses fairly quickly

by using SurveyMonkey’s search and text analysis tools. Once

I’ve sorted and categorized all of these responses, I begin the

more tedious task of reading through and categorizing

everything that’s left.

REVIEW	AND	ADJUST	CATEGORIES

Once I have all of my responses tagged, I review the responses

in each category. Sometimes I find that a category is too broad,

so I split it into multiple smaller categories. I also might move

responses from one category to another that seems more

appropriate—for example, I might have initially identified a

response as a “UI Design” problem, when it actually belonged

in the category for “Content/Copy.” There’s always some

shuffling that goes on before I feel like everything is

categorized accurately.

IDENTIFY	PROSPECTIVE	INTERVIEWEES

Surveys are great for helping us understand what a group of

users might be struggling with, but they don’t always help us

understand why they’re struggling. To learn more, our research

team usually follows surveys with a round or 2 of customer

interviews. As I’m going through survey responses, I try to tag

people I want to reach out to later. Usually I’m looking for an

interesting problem or scenario that I want to know more

about. Flagging potential interviewees while I’m sorting data

saves me from having to search for them again later.

KEEP	TRACK	OF	OUTLIERS

Surveys can help us see overall trends across large groups of

users, but they’re also good at drawing attention to users who

really stand out from the crowd. It’s particularly useful to flag

these “outliers” and reach out to them individually for a follow

up conversation. Our UX team is always on the lookout for

interesting use cases, for people who are pushing the limits of

our app or employing interesting workarounds. These are often

people we can learn from and are well worth the time to chat.

LEARN	TO	LET	GO	AND	MOVE	ON

This is a hard one. I used to feel like a negligent researcher

when I didn’t explore every single pattern, trend, or finding

that came up in my surveys. But eventually I realized that

following all those leads didn’t make me a better researcher—it

only made me a busier researcher.

If you come across something that’s interesting but outside the

scope of your current research goals, great! Start a running list

of “things to explore” and come back to it later.

Parting	thoughts
Your job doesn’t end once you’ve filtered all of your responses

into categories. Sure, you might be able to say “22.31% of

respondents mention they use mobile tools,” but that statistic

doesn’t tell you who these users are, which mobile tools they

use, the tasks they are trying to accomplish with these tools, or

why they prefer to work with a mobile device. It’s our job as

researchers to draw meaning from this data by putting it into

context or digging deeper for more information. Will organizing

and categorizing data do this for us? No, but it does give us a

very good place to start.

RESEARCH

The	Open-Minded	Interview
STEPH	TROETH

There are more ways to conduct a design research interview

than to cook a potato: over the phone, remotely through online

meeting software, face-to-face in any variety of social settings

—sterile meeting room, a noisy office, a bustling café… and the

list goes on.

And that's just the setting. What about the questions to ask?

Should we be structured in our interviews? Would it make our

data easier to analyze? That would be the data-serving

approach. However, what we look for in design research is

naturally complex. To get closer to the true picture of our users’

contexts and the motivations that lead to their behavior and

patterns of use, we ought to be prepared for messy, unexpected

situations and data we can’t predict.

At MailChimp, when the research team started looking beyond

product features and interface issues to the stories behind these

problems, we began to refine our interviewing skills. Now we

aim to be focused yet opportunistic in what we might learn. We

want to gather consistent enough data that enables us to do

meaningful comparison across interviews and other data, but

also allow for unexpected surprises.

Before	the	interview
As researchers, our work begins long before we’re sitting across

from an interviewee. Here are steps we try to take and things

we think about before we even begin those conversations.

ASK,	“WHAT	DO	WE	WANT	TO	LEARN?”

Walking into an interview with some clarity about what we

want to learn is crucial to ensuring we’ll come out the other end

with usable data. For a set of interviews, we want to identify our

research objectives. Are we trying to profile a type of customer

more profoundly, or are we trying to compare various

customers’ workflows? Are we just trying to explore the

environment a particular set of customers operate in within a

particular industry?

Regardless of the type of interview we conduct, it’s good to have

a handy checklist of “areas of knowledge.” This is the baseline

of what we want to learn from a set of interviews and serves as a

guide to keep us from straying too far down rabbit holes.

Sometimes we write these as a list; other times they’re more

naturally expressed as a set of questions. Giving some upfront

thought to the angle and the desired outcomes helps us

straighten out how we want to approach any given interview,

and it irons out any potential tricky nuances. I liken this to a

mental rehearsal of how we imagine an interview might play

out.

Depending on your customers, establishing what you want to

learn may also influence who you recruit to interview—what

kind of customers (or even non-customers) might be best

suited to answer your questions?

ESTABLISH	RAPPORT	DURING	RECRUITING

There are at least 2 parts to recruiting: selecting potential

interviewees and actually contacting them. How we select

interviewees truly depends on what we intend to study, and

how we interact with our interviewees from the outset can help

bridge any awkwardness that might arise in the unnatural

social setting that is the interview.

When I’ll be doing an interview in person, I find it helpful to

reach out directly to the user I’ll be talking with. This lets me

begin our conversation before we meet, and it allows me to put

some expectations in place—already, in such a situation, we are

setting ourselves up to be trusted.

During	interviews
A rehearsal is fundamentally different from a performance.

When you’re sitting across from the user, it’s the real thing.

There’s a bunch of great advice out there on how we should

come into interviews with guidelines—but don’t be afraid to

stray from it.

With my ever-faithful interview guidelines as a security

blanket, I prefer to approach interviews from a more open

standpoint and focus as necessary.

SET	UP	THE	ATMOSPHERE

Some interviewees like small talk, some do not. I often let them

guide me on how much they want to chatter, and try and

establish a comfortable middle. As you are getting to know one

another, this is usually the best time to tell your interviewee

what you are interested in learning (I keep this bit short and

general, so as to leave it open to interpretation). Also, this is

the time to sort out formalities, like getting those release forms

signed and signaling how you intend to record the interview so

that your interviewee is forewarned.

Often, I may prompt them to talk broadly about themselves,

and let the interviewee hone in on issues most important to

them. Already, I set the expectation that I’m here to listen to

their stories. By keeping the conversation open, I can let the

user take the lead on what they want to say. If we struggle to get

started, I might ask them to tell me a story. Usually, things tend

to just flow from there.

ALLOW	FOR	BEING	HUMAN

I lean towards a loose, unstructured format because human

memory is associative and, as people recall situations, they

need to jump around a little. It’s through going back over the

same ground several times that we are usually able to uncover

deeper insights. More formal, structured interviews have

always seemed strange to me, the way they can treat our fellow

human beings as “black boxes” through a mechanistic,

question-answer format. If you keep repeating things in the

same sequence, your interview risks becoming more of an

interrogation. By spreading the depth of questioning out a

little, you have far better control over the tone of the

conversation without being too confrontational.

ASK	YOURSELF,	“WHAT’S	THE	STORY?”

When I first started running interviews, I tried to remember all

the types of questions I had to ask. Then I simplified my

approach: just be naturally curious. That’s all there is to it.

This has mostly worked well for me out in the field, but being

ever pragmatic, I set about looking for a framework. Eventually,

I realized that if we treat every interview as a story that we want

to retell, we can quite easily get at the core facts and the

nuances. By establishing key characters (who are the main

people you work with?), timelines (what happens when?),

severity of struggles (how much? how frequent?), and

emotional impact, we can extract a lot of information in a short

amount of time.

KEEP	A	CONVERSATION	CHECKLIST

Interviewees will throw details at you that are out of

chronological order—it’s your job as the interviewer to make

sense of the story. I usually use a conversation checklist to keep

myself on track. As the conversation goes on, I keep an eye on

my checklist to make sure everything is covered. If it’s not, I’ll

find a convenient way to segue into something that might be on

my list, or go back to a point in their story for a point of

clarification.

The other tool I sometimes use is what I called the

“conversation stack”—in my notes, I keep track of topics that

the interviewee may have touched upon that I want to dive back

into later. This allows me not to interrupt the flow too much.

As we close up the interview, I will go over my notes and double

check some points to make sure my impressions are accurate

and complete.

When	it’s	over
It can be difficult to immediately process the content of an

unstructured interview, but some reflection can be helpful. The

best way to deal with the data is to write down the key points

that you remember immediately after the interview. When we

interview in teams, we allow a little time between interviews to

put together a quick summary of what jumped out at us, and

trends we found most significant. Our memories are great

filtering tools in their own right—why not exploit that property

of our minds?

After more interviews have been conducted, and after we’ve

had a bit more time to reflect, we also do periodic reviews of

sets of past conversations. If too few interviews were

conducted, there is a strong danger of bias, so obviously this

doesn’t replace the more in-depth analysis. However, over

time, key takeaways from interviews distilled in this way

become a body of knowledge in its own right.

Also, maybe I’m a little old-fashioned, but I always write a

thank-you email to an interviewee after our conversation,

leaving an open invitation for any further comments or

questions. After all, a customer’s story begins and ends beyond

the limits of their interaction with us, and certainly beyond the

timeframe of an interview. It seems fitting to keep conversation

lines open—there might always be more to say, or another

occasion to meet.

DESIGN

Why	You	Should	Sketch,	And	How
Federico	Holgado

Evolution	of	a	Pattern	Library
Jason	Beaird

Building	a	Better	Pattern	Library
Federico	Holgado

High	Five	for	SVGs
Caleb	Andrews,	Alvaro	Sanchez

DESIGN

Why	You	Should	Sketch,	And	How
FEDERICO	HOLGADO

Sketches are the building blocks of the language designers use

to communicate. If you see me walking around MailChimp HQ,

you probably also see a sketchbook or an iPad in my hand. I

knew sketching was important before I came to MailChimp, but

over the last few years I’ve been reminded of that fact again and

again. Plus, I’ve learned a few tricks that have saved me

countless hours of mucking around in Photoshop or wrestling

with CSS to explore UX and UI ideas. Here's what works for me.

More	sketching,	less	hand	waving
I studied industrial design in school, and sketching is a big deal

in those classes. We had the idea drilled into our heads that if

you have to use words or hand gestures to describe a feature,

http://gatech.edu/

your rendering or physical model isn’t good enough. Same for

when you're talking about a UI feature—it’s much easier to bust

out a quick sketch to show your team exactly what you’re

thinking about. And when it’s easier for them to understand

your thoughts, they can more quickly jump in and make edits or

ask questions.

Have	a	purpose
Another thing I learned very early is that there’s a process of

refinement with sketching. In the early stages, you’ll produce

tens or hundreds of very quick sketches to explore forms and

ideas. Once you start to clarify the direction you want to take,

you can start filling in more of the pieces. Many times, my

sketches focus on big things and leave out the smaller details.

You’ll see squiggles for text and rectangles that represent

buttons and images. But your sketches don’t have to be perfect

or beautiful—they just need to get your idea across.

Sharing	is	caring
At MailChimp, I work very closely with our UI designers Tyrick

Christian and Caleb Andrews, and we’ve figured out a quick

process for producing beautiful feature comps in Photoshop.

We start by sitting down and talking through concepts. We’ll

usually sketch as we talk, and generally get a polished idea in 5

to 10 sketches. Next I’ll photograph those sketches with my

iPhone and upload them to Evernote. There, it’s easy to add

notes and discuss them as a team. When Tyrick moves on to

create a more detailed comp in Photoshop, he has a nice

blueprint to work from filled with notes and examples about the

interactions to be designed.

http://twitter.com/tyrickc
http://twitter.com/calebbritton
http://www.youtube.com/watch?v=KzKXdtv_eX8

Select	your	tools
My notebook of choice is a large Moleskin journal with squared

paper. This is the largest Moleskine notebook I could find, and

the extra real estate helps when I’m working on more detailed

sketches. The squared pages also keep things in proportion,

since sketching software usually involves drawing boxes upon

boxes of stuff. Using a notebook also helps keep my sketches in

one place, which makes it easier to refer to previous projects. I

am constantly looking back at sketches from previous months,

http://shop.moleskine.com/en-us/notebooks-journals/classic/classic-notebook-large-squared-hard-cover-black

and having a bunch of loose sheets would make this difficult if

not impossible. (Related: I’m kind of a spaz.)

I use a Pilot Razor Point pen. It’s a felt-tip pen, which makes it

less prone to drying. The line weight is thin enough to write in

small letters, but still dark and consistent from stroke to

stroke. I buy them by the box.

Of course, pen and paper have their limitations. Snapping

photos of your sketches and sharing them digitally can be a

drag, and the photographed sketches often lose some contrast

and detail. Not so on an iPad, though. My current app of choice

is Paper. I also use a Retina iPad (not an iPad Mini) because I

want to sketch over the largest possible area. The Adonit Jot Pro

is the most accurate stylus I’ve tried on the iPad, almost as

accurate as a normal pen. And sharing sketches with Paper and

adding them to Evernote is a breeze.

http://www.amazon.com/Pilot-Razor-Point-Marker-Stick/dp/B00006IFJN
http://www.fiftythree.com/

First	sketching	experiment	on	Paper	for	iOS.

Pros	and	cons
When I sketch on paper, I use a single pen and no color

whatsoever. With the Paper app, adding color and different line

weights to a sketch is simple, and the results are beautiful. It‘s

certainly a different aesthetic than a hand-drawn sketch, but

the fine-line pen and watercolors make a killer combo. Also,

the sketches maintain a lo-fi feel to them, which tells people

they’re looking at ideas, not finished prototypes.

There are some minor disadvantages to digital sketching,

though. So far, I’ve found it to be a little slower than traditional

paper sketching. Using a stylus can be awkward at first, though

it gets easier with practice. Sometimes I trigger unwanted

actions, like turning the page or bringing up the iOS notification

center. Also, having the power to undo a line or stroke means

that I end up being more nitpicky about getting things right.

The	future	of	sketching
My foray into iPad sketching with Paper is only a couple of

weeks old, but I’m already loving it. I’ll still do a quick sketch

here and there in my Moleskin, but unlimited pages, better

looking sketches, and easy sharing has really won me over.

DESIGN

Evolution	of	a	Pattern	Library
JASON	BEAIRD

Life in the web industry sometimes feels like it’s measured in

dog years. While time does fly when you’re having fun, the

trends, techniques, and technologies change so fast that a 2-

year-old website or application design can feel like it’s a decade

old. When I started at MailChimp in early 2010, this is what our

application dashboard looked like:

Up until that point, the markup and styles for every component

of the application had been (quite lovingly!) coded from scratch.

We used common classes for things like buttons and grids, but

the dated auburn tones, font styles, and gradients in the design

above were baked in all over the CSS. In short, it was far from

what our friend Brad Frost would call Atomic Design. So when

we started talking about a full redesign in mid-2010, we knew

things had to change.

We started working months before we ever saw a single

screenshot of what the design team was conjuring up for

MailChimp’s new look. Our primary focus for this “pre-design”

http://bradfrostweb.com/blog/post/atomic-web-design/

was to reduce repetition in our CSS to make the actual redesign

process easier. We did this by combining similar interface

elements into reusable patterns. The metric we used to gauge

our success was total CSS size, and over the 6 months before we

released the 2011 redesign, we managed to cut about 120k from

our CSS. Here’s what the dashboard looked like after we

launched in February 2011:

http://blog.mailchimp.com/redesigning-the-mailchimp-app/

As we were creating these reusable patterns, we started

archiving them in an internal “cheat sheet” for a couple

reasons. First, we wanted to create a style guide that anyone

writing front-end code for the app could use as a shortcut.

Second, we also wanted a test page to show whether or not the

changes we made to our pattern CSS would break things in the

app.

Fast	forward	to	November	2012...

Knowing that we were going to be embarking on another big

redesign, we started crafting a brand new pattern library. We

already had a very modular approach to working on the app, so

our focus the second time around was making things

responsive, more user friendly, and even more flexible. As with

the previous redesign, our team was working for several

months before the actual design was settled on. Here's how it

looked when we launched in 2013:

By the time we launched New MailChimp, we had a much more

extensive collection of common interface patterns. Unlike our

old pattern library, though, we made this one public. We didn’t

http://blog.mailchimp.com/new-mailchimp-is-here/

make a big deal about it, but it’s been available online since our

most recent redesign launched in 2013.

Now, you may be asking: why would we publish something like

this when it probably won’t benefit anyone outside of

MailChimp? Well, for the same reason we do our UX Newsletter.

We want to be transparent, share our challenges, and show our

work. As with just about everything on the web, our pattern

library was inspired by the struggle of many brilliant people,

and we hope it’ll inspire others as well. It’s not perfect, and you

might even find it broken at times, but it’s served us well for

the last year—which is really like 7 in web industry dog years.

http://ux.mailchimp.com/patterns

DESIGN

Building	a	Better	Pattern	Library
FEDERICO	HOLGADO

Stephen Kieran and James Timberlake’s Refabricating

Architecture profoundly impacted me as a designer. The book

compares architecture to the automotive, aerospace, and

shipbuilding industries, discussing how building construction

processes haven’t fundamentally changed in the last 80 years

or so, while other industries have radically shifted how they

create, design, and build.

“The traditional building paradigm is to gather all the parts of a

building on site and then assemble them piece by piece,” Kieran

and Timberlake write. First, an architect surveys the land,

taking careful measurements and creating 2D drawings based

on the designs. Next, a team using specialized machinery and

devices interprets these drawings to prepare the land, and

http://www.amazon.com/Refabricating-Architecture-Manufacturing-Methodologies-Construction/dp/007143321X

further specialized machinery and teams start the process of

pouring the foundation. Once the structural components of the

building finally go up, then comes plumbing and, finally, the

interior.

Kieran and Timberlanke contrast that rigid, linear process with

other industries. The automotive industry has taken advantage

of tools to share information, and has combined multiple

processes to optimize production, cut costs, and make higher

quality automobiles. Instead of manufacturing and assembling

every piece of every car under the same factory roof, those

pieces are subcontracted to outside manufacturers. In the

shipbuilding industry, too, technology has adapted to the

changing world. Modular construction allows shipbuilders to

defeat gravity, and concurrently work on different modules of

the ship that are not limited by the location or proximity to the

ground.

In early 2013, when MailChimp’s UX team began working on our

big redesign, we took some of these ideas about modularity and

multi-threaded development and applied them to the way we

build software. The end result is a system of individual and

interchangeable parts that start at the smallest possible level

and grow from there. Components are then assembled from

these individual parts, and these components make up some of

the core parts of our app. Once a group of components are

assembled, we get a fully functioning page inside our

application that is consistent in design and architecture with

the other pages of our app—all because the pages share the

same architecture.

Our pattern library consists of both fundamental pieces and

ready-made components built from these small parts, and

provides developers with a great toolset to build interfaces that

work with our systems. Here, I’d like to show you how they’ve

helped us in our work—specifically, in developing our “slats”

system, one of the most fundamental and far-reaching parts of

MailChimp.

Slats	in	the	real	world
When we began our redesign, we started with the most visited

pages of our app, the main section dashboards. In the old

MailChimp, we used a simple table to display these items. Upon

further examination, we had a hunch that there was a better

way of visualizing this data. So we spent a lot of time thinking,

sketching, designing, and prototyping ideas.

http://ux.mailchimp.com/patterns

For a while, nothing made sense. We explored a dual-mode

interface with “cards” that were visually appealing and tables

to satisfy the more information-dense requirements of some of

our users. But a visual approach doesn’t work because of the

similarity of the campaigns our users send—they all look

generally the same. We also realized that one of the important

things our users did in the campaigns table was sort by

different attributes to “find” campaigns. The sortable

attributes available didn’t make any sense, and this freed us

from the notion that we had to display this data in a tabular

manner.

One	example	of	the	slats	found	throughout	the	MailChimp	app.

The slat system was born out of efforts to make these

connections between different sections of our app, and

eventually we landed on something that worked for our 3 main

sections. We added filtering instead of sorting (where it was

appropriate), and, before we knew it, we had created the

foundation of our dashboards.

The months we spent designing the original slats paid off in

more ways than we could’ve imagined. After the initial time

investment, we were able to reuse the same code to beautify

other parts of the app that would have otherwise been boring

tables. Here are the mobile versions of the Campaigns and

Exports sections side by side—you can clearly see the

resemblance. Adapting our slat system to the Exports

dashboard took me all of 45 minutes, and this included a mobile

view that functions and looks great.

Mobile	campaign	slats	on	the	left	vs.	export	slats	on	the	right.

Slats also now appear in Segments, the list of Conversations,

and, most recently, our Exports dashboard. These parts of an

application generally don’t receive the same level of attention

as a main dashboard, design-wise. But with our patterns, they

fit within our system, they look nice, they’re vetted, and they’re

familiar. They even respond to smaller screen sizes.

The beauty of this process was that while a small team

splintered to work on the slat design, the rest of the team

worked on implementing other parts of our system (like our

forms, overall page structure, and navigation). They were

working on the foundation at the same time we were working

on the interior, and we all kept each other in the loop.

The	old	way,	the	new	way
With this system we were able to modularize much more than

just our slats. In fact, after our initial launch, we modularized

most of the app. Forms, buttons, tables, and pieces of our editor

all started falling into place.

I have to admit that, at first, it was tough to think in this way. I

vividly remember working “the old way”—that is, crafting

custom pieces of UI for every new feature we dreamed up. The

CSS was unmanageable, and as much as we tried, things never

felt like a true family of components. Everything had a slightly

different makeup, both outwardly and in the underlying code.

Even though the time investment was significant in the

beginning, we are still reaping the benefits. Taking a cue from

our shipbuilding friends, we’ve created modular pieces that can

be developed at any point in the process. From the auto

industry example, we’ve learned how to share requirements,

how to break the QA cycle into smaller chunks, and how to

share and tweak components.

Our teams work independently, but always from a common

place. We have a platform to discuss our changes and ideas that

allows not just the front-end devs, but also our engineers, to

comment on code and design decisions. Our visual designers

have helped us establish rules of vertical and horizontal rhythm

that help us minimize the number of joints when we assemble

our pages. If the system is working properly, it means that the

designers and front-end devs are creating in harmony.

Our back-end developers have also benefitted from this system,

since they are now encouraged to create general systems that

can be reapplied. They have to learn how to implement less

tooling, which speeds up our development time. Our standards

now allow them to work on the data layer fully cognizant of

what our UI expects.

And overall, the level of consistency and cohesiveness that

we’ve reached feels good. The people that use our software now

http://us5.campaign-archive2.com/?u=7e093c5cf4&id=564702bd96

have a beautiful, responsive, cohesive app that lets them work

faster, and the people that build our software have a toolbox

with which to craft our software in new and better ways.

In the end, we’re in a better place now than we were before the

redesign, and that makes the hard work and long hours we put

in worth it. We’ve created a system that will be the basis of our

application for future iterations. Based on the lessons of our

sister industries, we’re headed in the right direction.

DESIGN

High	Five	for	SVGs
CALEB	ANDREWS,	ALVARO	SANCHEZ

We spend a lot of time watching people use MailChimp, not

only to learn how we can improve but also to get a sense for

how people feel as they use the app. From doing this, we know

sending a campaign can be stressful—users are often under

deadline, and the fear of sending an email with errors is ever

present. People twist their mouths, wring their hands, even

break out in a sweat when they’re about to send. We feel this

stress ourselves every time we create our own UX Newsletter.

Knowing the emotional context of sending, we wanted to

convey to our customers that we understand how they feel by

acknowledging their moment with a congratulatory high five

from Freddie. Previously, we displayed a picture of Freddie’s

hand, frozen in mid-air awaiting a high five, but we felt like we

could do more to provide our users with a sense of relief. In a

recent release, we experimented with SVG animations to make

this moment even more triumphant.

The SVG (short for “scalable vector graphic”) has been around

for a while, but some folks are only now learning about its

exciting advantages. SVG animation is a subject that’s hard to

do justice in just 1 article, so we’re going to break it into 2 parts:

Caleb Andrews will discuss preparing SVGs for animation, and

Alvaro Sanchez will get into the nitty-gritty of how we made

Freddie’s animated high five.

Caleb:	Fitter,	happier	SVGs
We start our SVG animation journey with some tips on file

cleanup and preparation that proved to be helpful when we

were getting customers excited about our high five animations.

ESTABLISH	LAYER	HIERARCHY

When you’re preparing an SVG illustration in Illustrator, layer

hierarchy is key. We opted to place animation frames in groups

so each illustration was clean and consistent. Properly naming

groups goes a long way when you need to identify the output of

http://en.wikipedia.org/wiki/Scalable_Vector_Graphics
https://twitter.com/calebbritton
http://blog.mailchimp.com/author/alvaro_s/

each group or path in a text editor, which we’ll need to do when

scripting the animation. For example, Freddie’s watch is broken

down into paths within a group so we can animate the time of a

scheduled campaign.

REMOVE	EXCESS	ANCHORS

Creating fewer groups, paths, and points in a layer helps keep

the SVG code light and legible. By installing Hiroyuki Sato’s

scripts pack for Illustrator, it’s easy to remove excess anchors

under File > Scripts > Remove Anchors.

NO	MASKS	BEYOND	A	CERTAIN	POINT

Above, Freddie’s high five is merged into a single SVG without

masks as 3 groups. These groups are considered the frames in

http://shanfan.github.io/Illustrator-Scripts-Archive/

the animation and can be hidden or revealed when necessary.

Sticking with the intended position, we chose to create the

masks via code to have more control and a cleaner SVG.

DESELECT	ILLUSTRATOR	EDITING	CAPABILITIES

Next, you’ll need to export your art out of Illustrator as SVG.

This option is easy to miss, but when saving your file in the SVG

format, be sure to deselect “Preserve Illustrator Editing

Capabilities” in “Options.” Doing this will trim a lot of extra

weight from the SVG code that you don’t need in the browser.

However, make sure you do this with the final version of your

illustration because, as you might guess, you won’t be able to

easily edit this file in Illustrator again.

STROKES	VERSUS	SHAPES

<rect	id="rectangle"	x="193.5"	y="50"	style="fill:#249AB9;"	
<line	id="stroke"	style="fill:	none;	stroke:	#F2F2F2;	stroke-width:	40;	stroke-miterlimit:	10;"

You can open your SVG assets in a text editor and take a look at

the code generated. In the example above, I have SVG shapes

for a rectangle and a stroke. In theory, they’re the same thing—

a rectangle—but the code to draw them is entirely different. If

working with stroked paths isn’t your style, a stroke can be

easily expanded by heading to “Object” and selecting “Expand”

in Illustrator.

CONCLUSION

Not too difficult, huh? With just a little bit of thoughtful

preparation, it’s pretty simple to output an SVG that lives up to

the hype and doesn’t bog down the browser.

Alvaro:	Behind	the	high	five
Caleb has explained how we prepared our SVGs for animation;

now I’ll take it a step further and explain how we animated the

SVGs. I’ve simplified my descriptions here, but I link to the

source code at the end, if you want to see all the components for

the final animations.

GETTING	STARTED

When I took on the Freddie animation project, I was given a

prototype of the animation, made in After Effects and then

exported as a GIF. Caleb helped me re-create in Illustrator the

shapes used in the prototype—hands, arms, fur, etc. After I

labeled the layers and organized the assets, I exported them as

SVGs. This left us with 3 SVG files, one for each image of

Freddie’s arm in a different position. Next, I started to think

about how to animate the shapes.

After doing some research on JavaScript libraries, I decided to

go with Snap.svg. Snap supports features like masking,

clipping, patterns, full gradients, and groups. It also provides a

simple and intuitive JavaScript API for animation.

The implementation for the animation functions (called

“mina”—that’s “anim” backwards) uses request

AnimationFrame, which makes the animations perform really

well in the browser, as Paul Irish has explained.

http://snapsvg.io/
http://www.paulirish.com/2011/requestanimationframe-for-smart-animating/

(As a side note, if you use a library that doesn’t support request

AnimationFrame to animate elements, be mindful of layout

thrashing. It occurs when JavaScript writes and then reads from

the DOM over and over again, creating document reflows, which

affect browser performance.)

ANIMATING	MOVEMENT

I created the high five animation with 3 separate images of

Freddie’s arm, each in a different position. For the final

animation to look like a single arm in continuous motion, I

needed to create a smooth transition between each image. To do

this, I used a step animation technique and stitched the images

together with transitions in between. (Why not just animate

one image? Calculating all the points in Freddie’s hairy arm and

morphing the arm curvature was just too complex for the scope

of this project.)

To load the 3 variations of Freddie’s arm, I used the Snap.load

function. On my first attempt, I used a separate Snap.load call

for each arm. While the animation loaded just fine in Firefox, it

broke in Google Chrome. Eventually I realized that Firefox was

able to keep all the transitions and initial values, regardless of

how many Snap.load calls were made. Chrome, however,

http://wilsonpage.co.uk/preventing-layout-thrashing/

couldn’t keep the transitions and initial values because each

Snap.load call creates a new SVG fragment with its own

viewport and coordinate system. I solved this issue by keeping

all the assets (all 3 variations of Freddie’s arm) in one SVG, so I

only had to make one call instead of 3.

The next step was ordering the stack elements in the final

animation.

To do that, I used Snap.svg’s function to group elements. For

example:

//	Order	of	grouping	is	important!!!
//	s	=	SVG	canvas	created	by	Snap
var	group	=	s.group(
		circleBG,
		hand1,
		hand2,
		hand3
);

Grouping also defines the stack order of those elements, with

circleBG on the bottom and hand3 at the top.

Then we defined and applied a mask to the group, which

animates the elements within the mask’s shape—in this case, a

circle.

Here’s how I defined a mask in Snap.svg:

//	Create	a	circle	at	x:200	and	y:200
//	and	200px	radius
circleMask	=	s.circle(
		200,
		200,
		200
);
//	Fill	with	white
circleMask.attr({	fill:	"#FFFFFF"	});

To apply the mask to the elements in the group, I added the

mask attribute to the group:

group.attr({mask:	circleMask});

Once the mask was defined and applied, I initialized the

position and visibility of all the elements. In our high five

animation, I loaded 3 elements that I animated, one after the

next, at different intervals.

To initialize the position of the arms, I used a transformation

string notation:

http://raphaeljs.com/reference.html#Element.transform

//	Initialize	position.
arm1.transform(
		"s0.6r-30t-100,	280"
);

Each letter is a command: “s” is for scale, “r” is for rotate, and

“t” is for translate.

With this notation I made arm1 40 percent smaller, rotated it

-30 degrees, and placed it away from the mask so it is no longer

visible.

I applied similar initializations to arm2 and arm3, but I hid

them by setting the opacity attribute to 0:

//	Set	opacity	to	0
arm2.attr({opacity:	0});

CONNECTING	ELEMENTS

Once I had all my assets in place and initialized, it was time to

start animating and chaining transitions. This is where things

got interesting.

Snap.svg has a function called Animate. This function receives

the following attributes:

Element.animate(
		attrs,
		duration,
		[easing],
		[callback]
);

Here is an example of the first animation triggered for the high

five:

arm1.animate(
		{transform:'t-50,60'},
		400,
		mina.backout,
		function(){
				//	callback	code	here
		}
);

By passing the transform attribute and new values as the first

parameter for the function, I told Snap.svg to move arm1 from

-100px to -50px in the X-axis and from 280px to 60px in the Y-

axis.

The second attribute (400), is the total duration of the

animation in milliseconds.

The third attribute (mina.backout) is a timing function, just like

mina.linear, mina.easein, mina.easeout, etc. The mina.backout

timing function creates a whip effect, making the arm’s

movement appear more natural.

The fourth attribute is the callback function that executes as

soon as the animation is complete. This is very important

because with callback you can chain animations together and

maintain control of when you’re able to create concurrent new

animations.

For example, in the transition between arm1 and arm2, I fade

arm1 using the callback from the initial transformation. Once

the fadeout is finished, arm1 is hidden (display:none) and the

reveal animation for arm2 begins.

This all happens very quickly—the fadeout happens in 30

milliseconds, and the fadein in 10 milliseconds.

Here is the snippet of nested callbacks for what I just described:

arm1.animate(
		{transform:	't-50,60'},
		400,
		mina.backout,
		function(){
				//400ms
				arm1.animate(
						{opacity:	0},
						30,
						mina.linear,
						function(){
								//	hide	arm1
								arm1.attr(
										{display:	"none"}
);
								//	Chain/Start
								//	animation	for	arm2
								_highFive.animate02();
								//	fadein	10ms
		});
},	100);

For a more detailed view of the code behind the High Five

animation, check out the source code for yourself.

http://codepen.io/mailchimpux/pen/Gblcs/

DEVELOPMENT

Building	a	System	for	Responsive	Email
Fabio	Carneiro

Tightening	Type	and	Relative	Font	Sizing
Mardav	Wala

Creativity	in	Front-End	Development
Jason	Beaird

Release	Cycles	and	Roadmaps
Federico	Holgado

DEVELOPMENT

Building	a	System	for	Responsive
Email

FABIO	CARNEIRO

Creating a modular responsive email blueprint for email

designers to learn and work from was a unique challenge.

Though there are plenty of articles and code snippets in

MailChimp’s email design reference library, getting into ready-

to-use, working code puts all of that information into a

practical frame of reference.

The responsive blueprint wasn’t MailChimp-specific, so I had

to consider the ways in which different email designers might

actually use the code. It came down to 2 things: The emails had

to be adaptable to many purposes, and they had to be robust

across a wide variety of email clients.

https://github.com/mailchimp/Email-Blueprints
http://templates.mailchimp.com/

Achieving robustness was the easy part. Many email clients are

a nightmare to deal with, but things get easier once you become

familiar with the ins and outs of each. From there, it’s just a

matter of working within those constraints.

Adaptability was trickier. Designing and building an adaptable

email for someone with a defined set of purposes is simple,

because you can take liberties with design and use specialized

HTML or CSS to make it all work. That’s because there’s

context: knowledge of what the email is for, what sort of

content it’ll be stuffed with, and—hopefully—which email

clients it will be viewed in. But there’s zero context to work

from when designing and building emails that might be used by

large groups of people, many of them in ways that we can’t

foresee.

To work around this lack of context, I followed a process that’s

similar to the one I apply to the email templates I build for use

in MailChimp:

1. Anticipate common use cases

2. Determine design patterns for those use cases

3. Create loose hierarchies and modular HTML structures

http://templates.mailchimp.com/resources/email-client-css-support

4. Reinforce the code with client-specific HTML or CSS

5. Educate within the code with commented, easy-to-use

markup

Here’s how I worked it out.

Anticipate	common	use	cases
By anticipating common use cases, I was able to establish a

rough idea of just what I needed to code and how I needed to

code it.

Pretty much all email falls into 4 broad categories: Read Me, like

newsletters or RSS-to-email campaigns, which deliver

information and are text- or image-based; Buy Me, related to e-

commerce, entice the reader to spend money; Join Me, like

event notices and invites, highlight a particular occasion and

urge an action towards it; and Understand Me, which are

transactional, like receipts and order summaries, and convey

important details or data, and little else.

In the case of this email blueprint, I had to account for all of

those scenarios.

Determine	design	patterns
All of those use cases share components with each other. For

instance, Buy Me, Join Me, and Understand Me emails might all

contain a call to action in the form of a button, while Read Me

and Buy Me emails rely on interesting content, most commonly

in the form of multiple images.

By examining the common threads between each type of email,

shared design patterns began to emerge, and I could then

compile a list of the blocks to be built. Ultimately, 17 different

patterns—like buttons, image groups, callouts, boxed content,

highlight calendars, and captioned images—were included in

the blueprint.

Create	modular	HTML
Once I knew what I was coding, it was time to figure out how to

code it.

With this blueprint, I felt that anyone should be able to grab the

HTML and understand how the code is structured, arrange

design patterns to suit different needs, style the email without

worrying about the framework, and send campaigns almost

immediately.

To meet those requirements, I wrote the HTML so that all

content blocks shared a common supporting structure, which

made the code easy to read and understand. Each of the content

design patterns was sequestered in its own table row, which

allowed for modularity within the template—content areas

could be duplicated or moved simply by copying or moving the

containing row.

Additionally, the entire framework was run by very minimal

CSS, just 4 rulesets in the standard CSS and another 4 in the

media query. There was some placeholder styling for the

content itself, but it only affected text styles and background

colors, so a designer could go in and write their own CSS

without having to worry too much about how the functionality

of the email would be affected.

Reinforce	code
Once I finished building, I ran the email through my usual

series of tests in desktop, browser, and mobile email clients. In

the first run-through, the email rendered without major issues

in all the popular email clients. I wasn’t quite finished,

however, because of 2 email clients.

Outlook 2007/2010 and the Android Gmail mobile app are, in a

word, terrible. Outlook has a host of issues due to its Microsoft

Word-based rendering engine, and the Gmail app, despite being

a mobile app, doesn’t support media queries. Writing email

HTML for the former requires very rigid, carefully crafted code,

while the latter requires “spongy” code: not responsive, or even

fluid, but pliable.

We normally err on the side of caution and make our emails

more robust in order to support Outlook—after all, it has a

stranglehold on the desktop email client market. But because

this responsive blueprint was meant for email designers with a

bit of technical know-how, I took the opposite tack and went

for maximum mobile support. This meant coding many of the

content blocks using aligned tables. Now, the Android Gmail

app is happy.

You might be thinking, “But why only the Android Gmail app?

There’s one for iOS, too!” And there is, but the iOS Gmail app is

http://templates.mailchimp.com/development/responsive-email/responsive-column-layouts

even worse—it supports nothing at all. Emails will render just

fine, but for now, you can forget about mobile friendliness.

Regardless, using aligned tables as a solution for Gmail is great

for flexibility, but extremely brittle and prone to layout mishaps

in (you guessed it) Outlook 2007/2010. The problems all stem

from a particularly frustrating bug in Outlook that

automatically inserts a page break into any document that

measures longer than 22 inches (or 1700px) in length. When

that happens, the aligned tables, which are essentially floated,

get all sorts of wonky. Fortunately, it seems like the problem

was solved in Outlook 2013.

One solution was to use conditional CSS and write a stylesheet

to override problems in Outlook. In this case, I kept it simple

and just collapsed the layouts into a single-column stack—the

same thing that’s done on mobile devices via the media query.

The conditional CSS is entirely optional, but it is a nice fallback.

With support for Outlook 2007/2010 and the Android Gmail app

shored up, the email is now pretty robust across multiple

clients and reasonably flexible, too.

Educate	with	comments
Some of these techniques may verge into “way out there”

territory, particularly for new email designers. To that end, I

made sure to include explanations within the code for why

certain bits of code are used and exactly what they do.

I also took steps to indicate where a content section begins and

ends, and whether or not it requires some kind of special

treatment.

By keeping the responsive email blueprint focused on common

uses, including design patterns ubiquitous in email, ensuring

the code is both robust and flexible, and taking the time to

clarify murky code, anyone should be able to dig into the

responsive email blueprint HTML and start working with ease.

Combined with our email template reference library, we’re

hoping to dispel some of the mystery and confusion

surrounding HTML email design. We’re not finished, though—

not by a long shot. Both the reference library and the email

blueprints are projects that I plan to improve and evolve based

on feedback.

http://templates.mailchimp.com/

DEVELOPMENT

Tightening	Type	and	Relative	Font
Sizing

MARDAV	WALA

MailChimp’s 2013 redesign gave us the opportunity to carefully

consider the typography in the app. Laying out content in a grid

is a piece of cake these days, but attaining vertical rhythm on

the web (that’s a fancy way of saying “aligning content to a

baseline grid”) is still nothing short of harrowing, especially

when the content varies wildly. But after addressing the initial

inconsistencies between design and code, which were mainly

due to the differences in how the line height and leading is

perceived (or not) in print and web media, our front-end and

design teams are finally speaking the same language.

Tightening	type

As Richard Rutter has noted, the vertical rhythm on any web

page can be achieved by carefully applying line height, margin,

and padding to the content. The trick lies in finding a suitable

line height, which forms the basis of calculating margins and

paddings.

Although the MailChimp app is content-heavy, very little of its

content consists of paragraphs of text—almost all of the

information is displayed as either lists, forms, tables, charts, or

data blocks. So instead of starting with a large value for a line

height, which would translate to large margins and paddings,

we started with the smallest possible margin value of 6px for

any element in the app. Our 6px baseline grid is derived from

this value.

Why 6px? We experimented with a number of base units, but

found that 6px multiplied elegantly to 12px, 18px, 24px, and so

on, giving us a nice range of type sizes and margins. It also

worked well when applied to small elements like buttons and

form fields. It offered us the flexibility we needed to construct

any UI.

https://twitter.com/clagnut
http://24ways.org/2006/compose-to-a-vertical-rhythm/

Change is a constant in MailChimp—we release new features

and refinements for the UI every 4 weeks—so in our quest for

vertical rhythm we had to design flexibility into our system.

Early in our design process we decided to apply margin spacing

only to the bottom of elements to make it easier to maintain

vertical rhythm. This way, new modules could be

accommodated without disrupting the visual hierarchy on a

page. Single-direction margins helped us achieve this goal.

SIMPLE	MATH

Because our UI is designed on a 6px baseline grid, all line

heights, margins, and padding had to be applied in multiples of

6 to maintain vertical rhythm. Fonts, however, can be set to any

size without breaking rhythm. Our base font size is 15px, a value

that we found to be legible in all situations without making UIs

feel oversized.

Best practices suggest setting the line height of type at one and

a half times the size of the type to improve legibility. With our

base font size set at 15px, that would result in line height at

22.5px. But because our baseline grid is set on a 6px base, we

tweaked the line height to 24px, creating a relationship

between the padding, margin, and line height in all layouts.

http://www.smashingmagazine.com/2009/08/20/typographic-design-survey-best-practices-from-the-best-blogs/

With the math sorted, we started applying these proportions to

the elements in our app.

For all headers and other font sizes, the line height is again a

multiple of 6 and is calculated based on the font size itself. The

examples use pixel units for the sake of simplicity:

h1	{
		font-size:	40px;
		line-height:	48px;
}

.small-meta	{
		font-size:	13px;
		line-height:	18px;
}

EXCEPTIONS	TO	THE	RULES

Images and charts march to the beat of their own drummers,

often breaking the baseline grid. Their heights are

unpredictable and can’t easily be made to fall in step with a

baseline. But the vertical rhythm remains unaffected because

the vertical spacing defined by the margins and padding doesn’t

change.

Elements with borders can also throw off the baseline grid,

because they’re added to, not included in, line height

calculations. But there’s an easy workaround: Simply include

the border as part of the overall element height. (This may

require reducing the top or bottom padding based on the border

height.)

Of course, purists may argue that this results in visual

imbalance if the border height is more than 1px—and they are

absolutely right. Striving to align horizontal rules and elements

with borders to the baseline grid is not always the right thing to

do, because the vertical rhythm is never affected with borders

and horizontal rules as long as the margins, line heights, and

paddings are correct.

Here’s an example of how we trimmed padding in list items to

account for a 1px border separating elements:

@base-unit:	6px;

.dotted-list	{
		margin-bottom:	(@base-unit	*	2);
		li	{
				padding-top:	(@base-unit	*	2)
				padding-right:	0;
				//	1px	less	padding	bottom
				padding-bottom:	((@base-unit	*	2)	-	1);
				padding-left:	0;
				border-bottom:	1px	dotted	#c0ffee;
		}
}

Charts can also be adjusted to follow your baseline proportions.

If the chart maintains the aspect ratio upon resizing the

browser window, set the chart height and vertical margins to be

a multiple of your base unit. If not, only set the vertical margins

and leave the height unchanged.

Because an image’s height will scale as the width changes, we

can’t depend on the height aligning to the baseline grid. In

these cases, we ensure that the margins surrounding the image

are specified to maintain the vertical rhythm.

Maintaining code with such special rules and exceptions can get

messy. A quick word with the team and a simple comment in

the code might alleviate some difficulties. Documenting the

change in a live pattern library also goes a long way.

We’ve also found that tweaking the vertical spacing at a

modular level—designing from the “content out,” as Mark

Boulton recommends—makes more sense than making

refinements on a global, per-page basis. If the individual

modules adhere to the baseline grid, no matter where they’re

placed on the page the vertical rhythm and the visual hierarchy

will automatically be maintained.

Relative	font	sizing
When using relative font sizing with em units for fluid, scalable

web design, the inevitable cascade may be more frustrating and

complicated than using absolute pixel-based font size rules.

Translating pixel-based design comps to em-based markup

used to be a chore. Luckily, we can simplify the process by using

the combined powers of CSS pre-processors and Ethan

Marcotte’s now ubiquitous target ÷ context = result.

The key to maintaining sanity amid this em-related cascade

madness is to focus on context. For nested em-based elements,

http://www.markboulton.co.uk/journal/a-richer-canvas
http://css-tricks.com/why-ems/
http://www.w3.org/TR/CSS21/cascade.html
https://twitter.com/beep
http://alistapart.com/article/fluidgrids

the context is their parents’ font-size in pixels; for the parent

elements, the context is the default body font-size (16px, if you

leave the default body font-size alone).

Consider the following HTML code based on this example from

Treehouse:

<h1>Title:	Tagline</h1>

The font sizes in ems for the heading and the nested span using

a LESS mixin can be easily obtained as:

//	default	body	font-size
@baseFontSize:	16;
@h1Size:	24;
@h1SpanSize:	18;

h1	{
		#pxtoem	>	.font-size(@h1Size,	@baseFontSize);
		//	24	÷	16	=	1.5em
		>	span	{
				#pxtoem	>	.font-size(@h1SpanSize,	@h1Size);
				//	18	÷	24	=	.75em
		}
}

While it may get difficult to keep track of the font sizes as the

nested levels increase (lists within lists with nested divs,

http://teamtreehouse.com/library/websites/build-a-responsive-website/introduction-to-responsive-web-design/converting-nested-px-to-ems

headings, paragraphs, hyperlinks, and spans), a little effort up

front can help achieve a small piece of the ever-elusive CSS

nirvana.

DEVELOPMENT

Creativity	in	Front-End
Development

JASON	BEAIRD

We’ve written a lot in the UX Newsletter about our pattern

library and how it helps us iterate quickly and ensure

consistency within MailChimp. Building with and extending

existing patterns is a bit like working with Legos: When you

start building, you know exactly how the pieces should go

together— but sometimes it’s fun to break out of the pattern

box and do things a little differently. I’d like to share a few

examples of how we’ve done that at MailChimp.

Text	based	text-align	icons

http://ux.mailchimp.com/patterns

We needed to add icons for left, center, right, and justified text

alignment. I could have easily added 4 new characters to our

icon font, but they just seemed too simple. I decided to take a

creative approach and build them with CSS. Basic CSS Shapes

are common practice, but they’re usually created by adding

background colors to modified block elements. Instead, I used

aligned em and en dashes as pseudo elements to allow them to

inherit text size and color the same way an icon font would. It

was a fun little exercise and only took a few lines of CSS. (View

the icon demo on Codepen.)

D3	animated	clock	icons

http://ux.mailchimp.com/patterns/icons
https://css-tricks.com/examples/ShapesOfCSS/
http://codepen.io/jasongraphix/pen/JAlud

A more complex example of front-end creativity was the result

of a single tweet. Mardav took it as a personal challenge when

Thierry Blancpain said, “Given their amazing copywriting I’m

always a bit disappointed that MailChimp’s icon for scheduled

campaigns does not reflect the send time.”

Mardav had been tinkering for a while with a JavaScript library

called D3.js, which is typically used to create complex charts

and data visualizations. We already planned to start using D3

for making charts, so it ended up being a great excuse to try it

out on these clock icons. Mardav whipped up a prototype and,

with a little help from our awesome engineering team, it was

converted into a custom Dojo widget that we now use all over

the app.

If you set your campaign to send at 1:45p.m., or 7:30a.m., the

clock can now reflect that time.

It’s a fun little detail that we didn’t think people would notice,

so we were pretty excited when it was featured on Little Big

Details. Thanks for the idea, Thierry. (View the clock demo on

CodePen.)

https://twitter.com/blancpain/statuses/394931135353851904
http://d3js.org/
http://dojotoolkit.org/reference-guide/1.9/quickstart/writingWidgets.html
http://littlebigdetails.com/post/76528632399/mailchimp-in-campaign-view-the-status-icon
http://codepen.io/wiinci/pen/flqmJ

Animated	GIFs	for	onboarding

We’ve always used video tutorials to teach new users how

MailChimp works. Most of these videos are less than 2 minutes

long, but we’ve found that sometimes you need less time than

that—say, only a few seconds. Animated GIFs are perfect for

that, and since our 2013 redesign, we’ve been using them on

occasion to show how new interface patterns work.

Unfortunately, when converting screen capture footage to GIFs

in Photoshop, the file size can be pretty huge. When Federico

created a series of short animations as part of an onboarding

process for our new editor, even with fairly aggressive

compression settings, the images each weighed in at over 1MB.

That’s pretty tiny for video, but way too heavy for a quick

animated tutorial. So he started looking for other examples of

animated GIF screencasts and stumbled across an email he

received from the photography platform Exposure.

The 2 GIFs in Exposure’s email had a bit of photographic

content, were sized for retina displays, and weighed in at a mere

171KB and 401KB. Federico asked Exposure’s Luke Beard what

they used to accomplish such a feat, and Beard replied: “only

the best, cockos.com/licecap/.”

At first we thought we might have been punked: The table-

based site looks like something out of the 1990s, the company

that makes it is called “Cockos Inc.,” and the name “Licecap”

(ew) didn’t inspire much confidence. But it was GPL free

software, so Federico gave it a try and re-recorded the GIF in

question, taking the output from 1MB down to a minuscule

182KB. Problem solved! (Thanks, Luke. Sorry we doubted you.)

Do	over-think	it	(sometimes)
Budgets and deadlines sometimes require you to rely on the

most obvious solution to a problem, but it shouldn’t always be

http://eepurl.com/Okuzb
http://exposure.so
https://twitter.com/lukesbeard
http://cockos.com/licecap/
http://www.cockos.com/licecap/

that way. Next time you’re working out a front-end challenge,

try second-guessing your first solution. Do something a little

different. Take every opportunity you can to apply new

techniques and technologies, especially when it will delight

your users. And don’t be afraid to ask how someone else solved

the same problem—you never know what new tips and tricks

you might learn.

DEVELOPMENT

Release	Cycles	and	Roadmaps
FEDERICO	HOLGADO

At MailChimp, we have to move fast—and that has as much to

do with how we work as what we work on. We have to plan

things that we can build efficiently, picking the right things to

work on at any given time. If you combine the right ideas with a

solid but flexible process for building software, you can achieve

some serious speed.

Our release cycle is constantly evolving, but right now, it’s 5

weeks long: 4 weeks of feature development and 1 week of code

freeze and QA. We limit our development time to keep

ourselves from building monolithic features that could break

MailChimp in major ways. Compared to code developed over 6

months or a year, 4 week chunks of code are smaller in scope

and therefore infinitely easier to test. Also, because we’re

constrained by time, it forces us to pare down pie-in-the-sky

ideas to something more manageable. But it wasn’t always like

this.

The	old	way:	ad	hoc	planning
When I first started managing releases for MailChimp

development, features were generally designed and built within

the same release cycle. At the time, our release cycles were 4

weeks instead of 5, which meant we only had a week or so to get

together a design that we could pass off to the UX devs and the

engineers to build. When designing and building in the same

release cycle, it was hard for people to mentally prepare: Details

were missed, scope increased because of unknown unknowns,

and it made our process more stressful. It was also difficult to

change our mind about something mid-release, since we’d

effectively have to start designing all over again.

The	new	way:	knowing	what	comes	next
Things have changed a bit since our early days of release

planning. One of our recent goals was to get better at knowing

what was coming next. Now we push to have an entire release

cycle’s worth of lead time to design. Engineers and CEOs are

much more comfortable committing to a large feature after it’s

been carefully dissected by UX, designers, and engineers,

because that time gives us a chance to find as many of the

“gotchas” as we can.

Large features are now designed with engineers providing

valuable insight from the start. Getting them involved in our

design process as early as possible means we’re less likely to

waste energy chasing down ideas that just aren’t feasible to

build. It also turns out that we have some really brilliant

engineers that are just as capable as UX team members when it

comes to suggesting ideas, workflows, and features. (That took

me a while to realize!)

Aiming	in	the	right	direction
The trick to moving fast is making every effort count. We have

to carefully consider what we commit ourselves to, because

backing out of an idea costs a lot of time. And the only way we

can quickly come to an agreement about what to build is by

talking with the people who are the most qualified to help us

find the answers. These questions are generally along the lines

of, “Is this idea feasible to build?” “Is it the right time to build

this idea?” And, the most important: “Is this idea worth

building?”

To kick off a release cycle, I’ll get together with MailChimp’s

lead engineer, Eric Muntz, and our CEO, Ben Chestnut, to

discuss possible features and refinements to work on.

Sometimes ideas come from past research and design on the UX

side, sometimes from engineering-related discoveries, and

sometimes straight from Ben as he talks to customers and

formulates ideas. Between the 3 of us, we settle on high-level

features and try to estimate the scope of what we’re going to

build. And we essentially ask and answer those same questions

for every big idea we discuss.

The key here is that these are high-level ideas, but they’re

based on things that we’ve been thinking about for a while. For

example, we decided to build comments and collaboration into

MailChimp months after we launched a small labs app called

OnStage, which mimicked some of the functionality we were

after. We figured out what worked in OnStage and what didn’t,

and then we took those ideas and crafted them into a plan for

the app. Once we decided to proceed, we had a clear idea of what

http://blog.mailchimp.com/author/eric_m/
http://blog.mailchimp.com/author/ben_c/

to build, and that focused energy let us move quickly and

release a big feature that we knew was going to work.

Taking	wrong	turns
Sometimes, of course, a feature doesn’t end up making the cut

for the current release. That decision is made early in the

release cycle so that we can shift resources quickly. Usually, if

we end up punting on a feature we already started working on,

it’s a matter of timing and not because it’s something we don’t

want to build. Whenever we scrap a feature, we add it to the

“parts bin,” which we can always reach back into later.

Let’s	build	some	stuff
Here’s a more detailed look at what it feels like to go through

these 5 week cycles of building stuff. (For me, it’s reminiscent

of writing a research paper in college: In the beginning, I think I

have so much time to work on it. Eventually, I realize I’ve got to

get some work done, and the night before the paper’s due, I

hustle and produce a good piece of work.)

WEEK	1:	RELEASING/PLANNING

We spend the first couple days deploying code from the last

release. We’ve also got our eyes and ears glued to our support

team, our inboxes and Twitter so we can listen hard to feedback

coming in and change fast in response. We’ve surely missed

some bugs that will need to be hot-patched to production

during the first couple of days. We’re also talking and trying to

refine ideas about what we’re building next. We have our

“release” meeting this week, too.

WEEK	2:	MORE	PLANNING,	SOME	BUILDING

We usually have a few tasks left over from the previous cycle

that we can jump on right away, while we’re still figuring out

some of the design details of the big features we’ll be working

on for the next release. Sometimes, if we have design details

finalized, we’re actually being productive and building new

stuff.

WEEK	3:	PRETEND	WE’RE	BUILDING	STUFF

This is where things start taking shape and features start to get

fleshed out. That includes lots of talking and figuring out

implementation details.

WEEK	4:	ACTUALLY	BUILD	STUFF

We’re getting close to the deadline. We better start coding.

WEEK	5:	CODE	FREEZE!	AND	MORE	PLANNING

We always have the best intentions to totally freeze feature

development during this last week, but our QA team is so

awesome at finding bugs and errors that this week is when

things actually become presentable enough for other humans to

look at.

I’ve heard stories of companies who dedicate entire teams of

people to build things, only to have those projects or features

killed at the last minute. Killing off a product team’s feature is

probably the most demoralizing thing you can do to a group of

people who build stuff, and it’s also incredibly unproductive.

We take the utmost care to pick our commitments carefully. We

respect the time and energy our teams put into everything they

do—but also, we just love the thrill of speed.

REFINEMENT

Iteration	and	the	Feature/Refinement	Balance
Jason	Beaird

Making	MailChimp	More	Accessible
Mardav	Wala

Fixing	a	Leaky	Funnel	with	Google	Analytics
Allison	Urban

Learning	from	Our	Mistakes
Tyrick	Christian

Refining	via	Redesign
Tyrick	Christian

REFINEMENT

Iteration	and	the
Feature/Refinement	Balance

JASON	BEAIRD

Recently, a company sent a rebate check they owed me to my

old address—for the second time. “It’s a bug, and they need to

fix it!” my wife exclaimed, annoyed. While I was also pretty

peeved, I couldn’t help but feel a bit of sympathy for the team

that would have to troubleshoot the issue.

When a user encounters a bug, or when part of your application

confuses them and costs them time, it erodes their trust in your

product. It also increases the load on your support team. Like

holes in a bucket, big ones will drain trust quickly, and lots of

small ones will kill it slowly over time. Either way, once that

trust is gone, it’s gone.

Even though we’re constantly working hard to improve our app,

MailChimp is not immune to bugs. And I’ll be the first to admit

that our bucket has experienced its share of both big and small

holes.

Find	the	holes,	protect	your	bucket
When you work on something every day, it can be easy to

overlook its shortcomings. But sometimes a seemingly

innocuous oversight can have devastating consequences.

This is why the UX team relies on interviews, surveys, analytics,

and other research methods to reveal the weak spots in our app.

We also try to pay attention to every feedback channel our users

might use to express opinions or frustrations. We watch social

outlets like Twitter, Facebook, and blog comments, and our

support team helps by tagging all of the chat and email

correspondence to help us discover common problems. And, as

Aarron Walter, our UX director, has written, we’ve found some

of the biggest leaks in our trust bucket through account closing

surveys.

Prioritize	and	patch

http://alistapart.com/article/connected-ux

Collecting feedback is easy, but filtering and determining what

to act on is tough. If we made changes based on every comment,

tweet, email, chat, and fax (OK, we don’t really collect feedback

by fax), we’d have more tickets than our team could address.

Many companies just hire more people to address every bug,

but that approach doesn’t scale and it can introduce usability

issues. Not every suggestion we get is worth implementing, as

they may be contradictory or would help only a few people.

Instead, our research team keeps a finger on the pulse of our

feedback and forwards only the most repeated and interesting

requests.

If you look at our commit logs for a given 5-week release, a

large number of the comments include words like “fixed,”

“tweaked,” “refined,” “adjusted,” and “changed.” This is

where a lot of those suggestions are getting made. Some bugs,

typos, or display issues that affect people’s workflows get hot-

patched in between release cycles, too.

Turn	weakness	into	strength
MailChimp gets a lot of attention when we introduce new,

innovative features, so it’s easy to focus on that instead of

making minor refinements. Oftentimes, though, a new feature

is simply a rethinking of part of the app that hasn’t been

updated in a while. This is the kind of stuff that everyone from

UX researchers to our awesome dev engineers most enjoys

working on. It’s exciting to build new things, even if those new

things are just reimagined incarnations of existing features.

Make	time	to	refine
Sometimes you need to slow down, set aside new ideas, and

work only on maintenance and refinement. Reducing the ticket

queue isn’t a particularly exciting task, and minor refinements

don’t make for popular blog posts, but both are necessary.

At least once a year, we have an entire release focused solely on

cleanup and maintenance. We find that the holidays are a good

time for this. We’ll also use that time to plan new features for

the next release and the upcoming year.

Think	small—and	big
When we’re working on bugs and refinement, it’s easy to

become nearsighted, missing the big picture of how our

changes affect MailChimp’s overall UX. Working on big, new

features allows us a broader perspective—but sometimes we

miss small details, fail to predict how people will use them, or

discover edge cases we didn’t consider before. The most

important thing is that we keep doing both, so our bucket keeps

getting bigger and better with as few leaks as possible.

REFINEMENT

Making	MailChimp	More	Accessible
MARDAV	WALA

We’re lucky that our customers provide valuable feedback, not

only about what works well in MailChimp, but also about what

doesn’t. Here’s an example: A little while ago, customer Justin

Romack, who is blind, let us know that he was struggling with

the accessibility of our dashboards and subscriber table.

“Email marketing is an insanely important part of my business,

and the clients I work with each and every day,” Justin told us.

“Being a totally blind guy and depending on screen reading

technology, it’s not always easy to find a dynamite option that

meets my needs and is fully accessible. MailChimp most

certainly comes the closest, though.”

https://twitter.com/justinromack

Lucky for us, Justin had consulted on accessibility issues before

and offered to help us improve MailChimp. He was kind enough

to send us some videos showing the problem areas in our app.

By watching those videos and reading some articles, we found

that we could greatly improve accessibility in the app by

focusing on 2 objectives: Establish and provide context on

elements using either the WAI-ARIA roles and properties or the

HTML title attribute, and ensure that all markup is semantically

correct. (This wasn’t true for the MailChimp subscriber table,

which used a div-based layout at the time.)

Here’s how we made it work.

Dashboard	improvements
Before we heard from Justin, we had already started making

accessibility improvements to the MailChimp dashboards.

These easy but effective fixes add context to the dashboard

elements, which screen readers use to provide audible

descriptions.

All dashboard views in MailChimp are based on the slats

pattern, which is made up of semantically correct list elements

containing a checkbox, a linked heading with supplemental

http://alistapart.com/article/the-accessibility-of-wai-aria/
http://www.w3.org/TR/2010/WD-wai-aria-primer-20100916/
http://dev.opera.com/articles/introduction-to-wai-aria/
http://www.w3.org/TR/wai-aria/usage
http://www.w3.org/TR/html4/struct/global.html#h-7.4.3
http://ux.mailchimp.com/patterns/slats

information, and a combo button with action items. Some

dashboards also include a subscriber count, along with open

and click rates.

At the time, the dashboard’s supplemental information about

campaign type and list name didn’t provide enough

information to explain what these elements actually mean.

Campaign type “Regular” and list name “Testing 1” weren’t

very descriptive or self-explanatory. To fix this, we used aria-

label to add descriptions to the campaign and list information.

This instructs screen readers to announce text preceded by

either “campaign type” or “list name.” We also used an aria-

label for the dashboard icons to provide audio cues about

campaign status.

Although the subscriber count and open/click rates are written

in semantically correct markup, a screen reader would

announce the numbers and corresponding labels separately,

making the information difficult to understand. To prevent this

from happening, we hid the subscriber and open/click rate

information from the screen reader, then added the

information back as an aria-label on the parent container. This

http://www.w3.org/TR/wai-aria/states_and_properties#aria-label

prompts the screen reader to announce the numbers and their

labels together.

Subscriber	table	improvements
As we continued to work on accessibility improvements, the

subscriber table got a much-needed refactor. It is now defined

in semantically correct data table markup.

As shown in this this example, our subscriber table scrolls

horizontally behind the single fixed column on the left.

Originally, we used th, thead, and tbody in conjunction with

this absolutely-positioned column, but this made VoiceOver

announce 2 column names per column. For VoiceOver users,

this shifted the entire table to the left. To fix this, we now only

use td elements in the table and assign the columnheader role

to the headers. We found Yahoo! Accessibility’s video on

implementing accessible tables very useful while we worked

through these changes.

We added more context using title attributes to the subscriber

profile checkboxes, which allows screen readers to announce

the subscriber email address when a checkbox gets focused.

http://codepen.io/wiinci/pen/vEHbr?editors=100
http://www.apple.com/accessibility/osx/voiceover/
http://www.w3.org/TR/wai-aria/roles#columnheader
https://www.youtube.com/watch?v=4TGMRRbH5sM

We also improved the member rating list for accessibility with

ARIA roles and labels. (View subscriber table on CodePen.)

Takeaways
Ensuring that markup is semantic and providing descriptive

context to elements are both very easy things we can do to

make an app screen reader-friendly.

For complex JS-based interactions, it’s best to use one of the

available frameworks. We use Dojo and we get all the UI widgets

with built-in accessibility features from its UI library.

After we made our adjustments, we asked Justin for a follow-

up. We were happy to receive a positive response: “Nothing

wonky. Nothing weird,” he said. “It reads straight across

perfectly—just as expected. Loving it! :)”

http://codepen.io/wiinci/full/vEHbr/
http://dojotoolkit.org/
http://dojotoolkit.org/reference-guide/1.9/dijit/

REFINEMENT

Fixing	a	Leaky	Funnel	with	Google
Analytics
ALLISON	URBAN

As a web analyst, I spend a lot of time thinking about how to

translate data into design insight. One of my favorite tools for

this is Google Analytics’ Next Page Paths. This handy little

report tells you where users go after viewing a particular page.

In terms of UX, it’s one of the quickest ways to identify where

things are going wrong in a funnel.

Here’s an example from our Account Activation funnel. After a

user signs up, they need to complete a CAPTCHA before they

can log into their account. The navigation pattern we’d expect

to see in Google Analytics goes like this:

signup > signup/success > signup/confirm >

login.mailchimp.com

However, we noticed that 32% of next page paths from

signup/success go to login.mailchimp.com, completely

bypassing signup/confirm.

If you could log into your account without completing the

CAPTCHA first, this wouldn’t be an issue. The problem is, you

can’t.

It turns out, you used to be able log in before completing a

CAPTCHA, but our developers patched the loophole for security

reasons. So why were some people still trying to log in rather

than following our instructions to confirm their account? Well,

because we were encouraging them with a shiny Log In button.

Since removing the Log In button from /signup/success/, the

percentage of people going directly to /signup/confirm/ has

increased from 63% to 79%. Our support department also

reports receiving 25% fewer emails related to account

activation, which puts them on track for the lowest number of

emails related to account activation all year.

Not bad for a few minutes of research.

REFINEMENT

Learning	from	Our	Mistakes
TYRICK	CHRISTIAN

In golf, a hole in one is rare. Even after training for years to

obtain a perfect swing, golfers still face obstacles out of their

control: wind, topography, turf texture. Golfers know this,

which is why they don’t get their hearts set on a hole in one

every time—they just do their best to move the ball closer to

the hole.

Designers face similar obstacles when they’re staring at a blank

page. Getting layout, workflow, language, and style just right in

one try is almost impossible. Instead, we break each problem

down and, piece by piece, move them closer to meeting the

needs of our users. We’re not trying to nail it the first time out.

We’re iterating.

In 2013, the MailChimp UX team started an enormous redesign

of our web app. Mobile web traffic was growing quickly and user

research showed that people wanted access to MailChimp from

a range of devices and contexts throughout the day, no matter

where they were. Customer interviews and a broad study of how

mobile devices shape culture led to MailChimp’s vision of the

future. To show our team the story of the experience we wanted

to build, we wrote a script, hired actors, and created a short

video portraying the use cases and workflow our future app

would enable. The video didn’t show a new UI, just a way of

working.

From that point on, the goals were clear and it was time to start

designing. We were working on concepts for a range of screen

sizes, from phone to desktop monitor, so we decided to build a

pattern library, which my teammates have described in detail

elsewhere in this book. During this time, we were less

concerned with creating a single, perfect idea, and more

concerned with iterating through several ideas until we found

the best solution.

Inside the MailChimp app, users get an overview of important

account data on a series of dashboards. During the redesign, we

experimented with using tables and cards as a means of better

displaying this data. After weeks of experimentation, we found

ourselves looking at interesting ideas, but we weren’t convinced

that they were good solutions. Tables were clear, but boring.

Cards were visually interesting—they made lists feel human,

reports exciting, and campaigns visually recognizable—but

they took up lots of space, and the information density was

poor. They were attractive, but not practical.

We took a step back and looked at the way information was

presented on the dashboards at the time. It wasn’t bad: Each

slat was easy to read. The actions were clear, and the content

could be easily scanned. We realized that this pattern could be

improved with just few adjustments, rather than a complete

overhaul.

So we sketched each slat from the Reports, Campaigns, Lists,

and Autoresponder dashboards, where we started with basic

typography for titles and metadata and slowly added other

elements like buttons, checkboxes, and status indicators. After

a few sketch iterations, we were ready to move to Photoshop.

Creating the initial version of each slat was easy because we had

already established patterns for each element. The most

troublesome slat to design was on the Campaigns page: We

wanted the status indicator to be visually interesting, but we

also had to consider other factors, such as content hierarchy

and color-blindness. After several iterations, we finally arrived

at an idea where we used icons to indicate the status for each

campaign and a color to reinforce the icon.

After we built them and made a few adjustments in the

browser, we’ve hardly touched those slats since the redesign. In

fact, they work so well that we’ve implemented them on other

pages throughout the app, adding them to the Templates

dashboard and File Manager when we redesigned those

sections. Since the content on those pages is similar, it made

sense to apply a consistent style across the entire app.

Of course, the slats weren’t perfect. After the initial release, our

customers offered feedback. We listened and responded. For

instance, before the redesign the dashboard showed the total

clicks and opens; after the redesign, the slats on the reports

dashboard showed only the open and click rate for each

campaign. After users spoke up about the change, we

compromised by showing the total number of clicks and opens

when the user hovered over the click and open rates.

Creating and refining slats is just one example of iteration

within our redesign. The same process continues for each piece

of the pattern library and, in turn, each workflow and page

within MailChimp.

Today when we make changes within the app, we continue to

listen closely to the customer feedback that started us down

this path. Sometimes there are cheers, sometimes there are

moans. Either way, we learn something new about the changes

we’ve made and we iterate on that feedback. In the end, the

dialogue between the user and our team makes this process

more effective—and, hopefully, more gratifying for the user.

REFINEMENT

Refining	via	Redesign
TYRICK	CHRISTIAN

In November of 2012, I was asked to re-imagine MailChimp as a

responsive application. Since so few applications as big as

MailChimp are responsive, my sources of inspiration were

somewhat limited. I packed the few items on my desk and

moved from our UX office to a room with our DesignLab,

marketing team, and a few dry-erase boards. Here, our creative

director, Ron Lewis, asked me to begin by researching,

exploring, and designing with no limitations.

This was my first responsive project, MailChimp is a large

application, and I was the only UI designer on the team. How

was I going to tackle this?

http://designlab.mailchimp.com/
https://twitter.com/seriousron

First, I needed to do some research. I started by re-reading

Ethan Marcotte’s Responsive Web Design, browsing Brad

Frost’s collection of responsive design patterns, researching

responsive grids, and looking at examples of responsive sites. I

also posted design inspiration to our office walls, covering them

with examples of illustration styles, typography, and

responsive patterns.

After doing all this research, I realized that it would be easier to

begin the process by redesigning the MailChimp pattern library

—a system of components, rules, and interactions that are used

to build and design the application.

http://www.abookapart.com/products/responsive-web-design
http://bradfrost.github.io/this-is-responsive/

Variations	of	basic	components	in	the	pattern	library.

Typography	samples.

Once we all agreed on a small set of patterns, I started

designing the navigation, which would give our team the

framework for the app. The goal was to make the navigation

flexible enough to work on all devices, support some version of

co-branding, and make search a primary action so our users’

data is always within their reach.

After trying several variations of horizontal navigation, I

realized it didn’t scale well across devices. I eventually tried a

vertical navigation which worked well for every display size

because the simple column of navigation on large screens could

easily hide in a menu on smaller displays. After realizing this, I

tried several more variations, the team agreed on a direction,

and the navigation was passed to the developers so we could see

a working prototype.

Examples	of	horizontal	navigation	from	early	in	the	redesign	process.

Explorations	of	design	treatments	for	vertical	navigation.

At this point, I started experimenting with different ways to

display content in MailChimp. After working on the pattern

library, I was thinking about grids and modules that could be

reshaped for different screen sizes. My first idea was to create a

grid view and a list view for the dashboard pages—the grid view

would give new users a beautiful visual experience, while the

list view would provide power users with a simple and efficient

table of information.

An	example	of	grid	and	list	view	on	the	campaign	dashboard.

Samples	of	tiles	for	the	grid	view	on	the	campaign,	lists,	and	reports
dashboards.

I experimented with tile treatments for the grid view for weeks

while other members of the team were building prototypes of

the pattern library. We wanted lists to feel more human, but

that particular direction required subscriber avatars, which we

weren’t prepared to add to the app. We thought about including

a display of each customer’s campaigns, but that would only be

useful if each email looked noticeably different from the rest,

which isn’t always the case. In the list view, responsive tables

weren’t attractive and didn’t scale well for smaller screens.

After weeks of experimentation and discussion, we decided to

change course. I discussed the previous designs with Federico,

and we agreed on a few points. We liked the idea of an efficient

table, and agreed that the content should be sortable,

scannable, and have the ability to grow vertically and

horizontally. After realizing this, it was clear that we needed

lists styled as tables, or “slats.” (Fed talked about these slats

earlier.) We quickly developed these ideas from sketches to

designs to prototypes.

Federico’s	sketches.

Post-sketch	designs	were	passed	to	other	members	of	the	team	for
prototyping.

While the prototypes of the lists, reports, campaigns, and

autoresponders pages were being developed, I moved on to

design some interior pages. After designing the pattern library,

this was much easier than I expected: Most of the heavy lifting

was done, and I only had to design small pieces of a few pages.

We went through countless iterations to get to the final design

of New MailChimp. We quickly abandoned ideas that looked

great but ultimately didn’t serve our users’ needs. It’s

sometimes hard to let go of ideas you’re invested in and move

in a new direction, but that’s just part of the creative process.

Big, collaborative projects like this will certainly teach you

humility.

Redesigning MailChimp was an invaluable learning experience

that forced us to examine our design process and how it could

be improved. We learned how to more effectively collaborate

with other teams, and think about the user experience

holistically. New MailChimp is now live, but there’s still work to

be done. That’s part of what we love about working on apps—

there’s always room for improvement.

http://blog.mailchimp.com/new-mailchimp-collaboration-by-design/

Resources

BY	THE	MAILCHIMP	CREW

The UX Newsletter

@MailChimpUX on Twitter

MailChimp’s Pattern Library

DesignLab Blog

Voice & Tone

The Principles of Beautiful Web Design - Jason Beaird

Nicely Said - Nicole Fenton and Kate Kiefer Lee

Data Smart - John Foreman

Designing for Emotion - Aarron Walter

Connected UX - Aarron Walter

http://theuxnewsletter.com
http://twitter.com/mailchimpux
http://ux.mailchimp.com/patterns
http://designlab.mailchimp.com/
http://voiceandtone.com
http://www.amazon.com/Principles-Beautiful-Web-Design/dp/0992279445
http://www.amazon.com/Nicely-Said-Writing-Purpose-Voices/dp/0321988191/
http://www.amazon.com/Data-Smart-Science-Transform-Information/dp/111866146X/
http://www.abookapart.com/products/designing-for-emotion
http://alistapart.com/article/connected-ux

BOOKS	WE	LOVE

Remote Research - Nate Bolt and Tony Tulathimutte

The Elements of Typographic Style - Robert Bringhurst

Just Enough Research - Erica Hall

Universal Methods of Design - Bruce Hanington and Bella

Martin

Don’t Make Me Think - Steve Krug

Universal Principles of Design - William Lidwell, Kritina

Holden, and Jill Butler

Interviewing Users - Steve Portigal

Storytelling for User Experience - Whitney Quesenbery and

Kevin Brooks

A Project Guide to UX Design - Russ Unger and Carolyn

Chandler

Web Form Design - Luke Wroblewski

http://www.amazon.com/Remote-Research-Real-Users-Time/dp/1933820772/ref=pd_sim_b_28?ie=UTF8&refRID=1EM76PHFNGV7CEWWAECY
http://www.amazon.com/The-Elements-Typographic-Style-Anniversary/dp/0881792128/
http://www.abookapart.com/products/just-enough-research
http://www.amazon.com/Universal-Methods-Design-Innovative-Effective/dp/1592537561
http://www.amazon.com/Dont-Make-Think-Revisited-Usability/dp/0321965515
http://www.amazon.com/Universal-Principles-Design-Revised-Updated/dp/1592535879/
http://rosenfeldmedia.com/books/interviewing-users/
http://www.amazon.com/Storytelling-User-Experience-Crafting-Stories/dp/1933820470
http://www.amazon.com/Project-Guide-Design-experience-designers/dp/0321815386/
http://rosenfeldmedia.com/books/web-form-design/

HANDY	TOOLS	AND	REFERENCES

JankFree.org: Let’s make the web silky smooth!

A11Yproject.com: The Accessibility Project

The Google Ventures Library

User Interface Engineering Blog

PatternLab

User Onboarding

Jobs To Be Done

Invision

What fuels great design - Braden Kowitz

10 Usability Heuristics for User Interface Design - Jakob

Nielsen

http://jankfree.org/
http://a11yproject.com/
http://www.gv.com/library/
http://www.uie.com/articles/
http://patternlab.io/
http://www.useronboard.com/
http://jobstobedone.org/
http://www.invisionapp.com/
http://www.gv.com/lib/what-fuels-great-design-and-why-most-startups-dont-do-it
http://www.nngroup.com/articles/ten-usability-heuristics/

Contributors

WRITERS

Caleb Andrews, UI designer

Jason Beaird, senior UX developer

Gregg Bernstein, senior design researcher

Fabio Carneiro, email developer

Tyrick Christian, UI designer

Fernando Godina, design researcher

Federico Holgado, lead UX developer

June Lee, design researcher

Alvaro Sanchez, UX developer

Steph Troeth, design researcher

Mardav Wala, UX developer

Aarron Walter, UX lead

Laurissa Wolfram-Hvass, design researcher

Allison Urban, software engineer

EDITORS

Kate Kiefer Lee

Rachael Maddux

Austin L. Ray

ART	DIRECTOR

David Sizemore

ILLUSTRATORS

Jane Song
Cover

This Paper Ship
Collaboration

Pam Wishbow
Research

Karen Kurycki
Design

http://jane-song.com/
http://thispapership.com/
http://pamwishbow.com/
http://cmykaren.com/

Vaughn Fender
Development

Lydia Nichols
Refinement

http://www.vaughnfender.com/
http://www.lydianichols.com/

	The UX Reader
	Table of Contents
	Introduction
	Collaboration
	Research
	Design
	Development
	Refinement
	Resources
	Contributors

