

SPI Interface
SPI interface and implementation
in u-blox wireless module
Application Note

Abstract

Description of the modified SPI (Serial Peripheral Interface) protocol,
used for high speed connection between LISA-U modules and an

application processor.

www.u-blox.com

http://www.u-blox.com/
http://www.u-blox.com/

SPI Interface - Application Note

UBX-13001919 - A Page 2 of 34

Document Information

Title SPI Interface

Subtitle
SPI interface and implementation
in u-blox wireless module

Document type Application Note

Document number UBX-13001919

Document revision A

Document status Preliminary

This document and the use of any information contained therein, is subject to the acceptance of the u-blox terms and conditions. They
can be downloaded from www.u-blox.com.

u-blox makes no warranties based on the accuracy or completeness of the contents of this document and reserves the right to make

changes to specifications and product descriptions at any time without notice.

u-blox reserves all rights to this document and the information contained herein. Reproduction, use or disclosure to third parties without

express permission is strictly prohibited. Copyright © 2013, u-blox AG.

http://www.u-blox.com/

SPI Interface - Application Note

UBX-13001919 - A Preliminary Page 3 of 34

Contents

Contents .. 3

1 Introduction .. 5

2 HW Interface ... 6

3 Protocol format .. 7

3.1 General .. 7

3.2 SPI header .. 7

3.3 Byte ordering .. 8

3.4 Bit ordering .. 9

3.5 SPI frame sizes .. 9

3.6 Invalidating SPI packets ... 10

3.7 Usage of RTS, CTS and MORE ... 10

3.8 State machines ... 12

3.8.1 Slave state machine ... 12

3.8.2 Master state machine .. 13

4 Communication protocol ... 14

4.1 General .. 14

4.2 Slave initiated transfer to the Master .. 14

4.3 Master initiates transfer with sleeping Slave .. 15

4.4 Frame end .. 15

5 Timing ... 17

6 Troubleshooting ... 18

6.1 Fast change of RDY lines could not be detected ... 18

6.2 Slave reboot outside SPI transfer ... 18

6.3 Slave reboot during SPI transfer .. 18

6.4 Master reboot outside SPI transfer .. 18

6.5 Master reboot during SPI transfer ... 18

6.6 Recovery mechanism for slave .. 18

7 Protocol examples .. 20

7.1 Communication example .. 20

7.1.1 How to fill the header and data buffer - Example .. 20

7.1.2 Multi-frame transfer example .. 21

7.2 Flow control ... 22

7.2.1 Data transmission stopped .. 22

7.2.2 Data transmission continues .. 23

7.2.3 Both sides signal flow control .. 24

7.3 MORE condition ... 25

SPI Interface - Application Note

UBX-13001919 - A Preliminary Page 4 of 34

8 Implementation comments .. 26

8.1 SPI clock rates on LISA-U1/LISA-U2 series .. 26

8.2 Estimation of available bandwidth .. 26

8.2.1 General considerations .. 26

8.2.2 Dependency on different parts of SPI transmission .. 26

8.3 Settings for LISA-U1/LISA-U2 series driver ... 28

9 Additional notes ... 29

9.1 State machines for implementation .. 29

9.1.1 Master (Application Processor) ... 29

9.1.2 Slave (LISA-U1/LISA-U2 series module) ... 30

9.2 Pseudo code ... 31

10 SPI debug command +USPITRACE ... 32

10.1 Defined Values .. 32

Related documents... 33

Revision history .. 33

Contact .. 34

SPI Interface - Application Note

UBX-13001919 - A Preliminary Page 5 of 34

1 Introduction
This document is a guideline describing how to connect a LISA-U1 / LISA-U2 series module to an application

processor via the Serial Peripheral Interface (SPI). In LISA-U1/LISA-U2 series, two additional signal lines are used
to communicate the state of readiness of the two processors. It is assumed that the communication over the SPI

is error free.

The SPI interface allows high-speed communication in both directions simultaneously. Since most application
processors do not support a high-speed asynchronous interface, a synchronous protocol is used.

The application processor sees LISA-U1/LISA-U2 series modules connected via the SPI interface as any other serial

device. All the control lines should be used. The transmission and reception of data is similar to an asynchronous
device.

SPI is a master-slave protocol. LISA-U1/LISA-U2 series modules implement the slave side.

In the following sections the processor with the master communication role is called master and the processor
with the slave communication role is called slave.

The following symbols are used to highlight important information within the document:

 An index finger points out key information pertaining to integration and performance.

 A warning symbol indicates actions that could negatively impact performance or damage the
device.

 This document applies to the following products:

o LISA-U1 series

o LISA-U2 series

SPI Interface - Application Note

UBX-13001919 - A Preliminary Page 6 of 34

2 HW Interface
The HW interface uses five wires plus the ground connection. Table 1 lists the signals.

Name Description Remarks

SPI_MISO SPI Data Line.

Master Input, Slave Output

Module Output. Idle high.

Data is transferred from Slave to Master

SPI_MOSI SPI Data Line.

Master Output, Slave Input

Module Input. Idle high.

Internal active pull-up to V_INT (1.8 V) enabled

Data is transferred from Master to Slave

SPI_SCLK SPI Serial Clock.

Master Output, Slave Input

Module Input. Idle low.

Internal active pull-down to GND enabled

Data clock (generated by master)

SPI_MRDY SPI Master Ready to transfer data control line.

Master Output, Slave Input

Module Input. Idle low.

Internal active pull-down to GND enabled

Master active and ready to transfer data. Similar to Select Slave (SS)

on SPI

SPI_SRDY SPI Slave Ready to transfer data control line.

Master Input, Slave Output

Module Output. Idle low.

Slave active and ready to transfer data

Table 1: SPI interface signals on LISA-U1/LISA-U2 series

The defined HW interface differs slightly from the standard SPI protocol.

 SPI_MOSI and SPI_MISO are active low (see section 8.3).

Figure 1 shows the line usage:

 The frame-size is known by both sides before a packet-transfer of each packet. The same amount of data is
exchanged in both directions simultaneously

 Both sides set their SPI_MRDY and SPI_SRDY lines independently when they are ready to transfer data. The

other side must wait for the activating interrupt to allow the transfer of the other side

 The master starts the clock shortly after SPI_MRDY and SPI_SRDY are set to active. The number of clock

cycles depends on the SPI frame size (see section 3.5), to be transferred

 The SPI_SRDY line will be set down after the end of the clock

 Usually the SPI_MRDY line is also set to inactive with the end of the clock, but when there is a large transfer

containing multiple packets, the SPI_MRDY line stays active. This is described in detail later in this document

SPI_MRDY

SPI_SRDY

DATA_EXCHANGE

SPI_MOSI

SPI_MISO

Header Data

SPI_SCLK

Figure 1: Line usage of the modified SPI Protocol

SPI Interface - Application Note

UBX-13001919 - A Preliminary Page 7 of 34

 In the diagrams in the following sections DATA EXCHG means communication over all three SPI signals;
the SPI_SCLK, SPI_MOSI, SPI_MISO signals are not shown. The timing can vary when SPI_SRDY and

SPI_MRDY are lowered at the end of a transfer. There is no fixed relation here, so SPI_SRDY can be

lowered before SPI_MRDY goes low or vice versa, or both will be lowered at the same time. This depends
on the timing of both chips.

3 Protocol format

3.1 General

A serial protocol with a fixed header size and payload controls the communication.

Header (4 bytes) Payload (multiple of 4 bytes)

Figure 2: SPI-frame

The size of the header is always 4 bytes. The size of the payload (bytes) must be a multiple of 4.

After the power-up, the payload-size is set to a fixed value of DEF_BUF_SIZE, to prevent the master and slave

from losing synchronization if a silent reset of the master or slave occurs.

The maximum payload-length MAX_BUF_SIZE and the default payload-length DEF_BUF_SIZE are fixed values
defined in the firmware, depending on the usage and the DMA-size of both sides. Section 8.3 describes the

settings for LISA-U1/LISA-U2 series modules.

In the LISA-U1/LISA-U2 series the maximum for DEF_BUF_SIZE is MAX_BUF_SIZE. In this case the system works
with a fixed buffer size.

 The values of DEF_BUF_SIZE and MAX_BUF_SIZE concern the payload and do not include the header.

A partial (CTS and RTS flags) software emulation of the RS232 interface is realized via the SPI Header. The

control information about the RS232 status lines can be exchanged between the master and slave by setting the

relevant flags in the SPI Header.

 Throughout this document the term payload refers to the SPI payload if not otherwise stated.

3.2 SPI header

The SPI header size is 4 bytes. It has the following structure:

Bit n. 31 30 29 28 27 24 20 18 17 16

 DSR

DTR

CTS

RTS
DCD RI Next Data Size

Bit n. 15 14 13 12 11 8 4 0

 RES=0 RES=0 MORE Current data size

Figure 3: SPI header (DSR/CTS bits sent by module, DTR/RTS bits sent by application processor)

SPI Interface - Application Note

UBX-13001919 - A Preliminary Page 8 of 34

These flags are written by both master and slave:

MORE The flag is set, if at the time of writing this packet, more data is available

 0 nothing more to send

 1 more data to send

Current data size The amount of valid data in this payload. (Since it is not possible to send a partial

payload, the master and the slave must fill the 2044 bytes long payload with padding

bytes after sending the valid data.)

Next Data Size The size of the payload required for the next-transfer on multiple transfers.

It is always set to DEF_BUF_SIZE (2044, binary 01111111100) due to fixed frame size

handling.

Every new transfer (SPI_MRDY has gone low or last packet was sent with MORE flag
removed) will start with a fixed payload size of DEF_BUF_SIZE bytes.

 “Next Data Size” and “Current data size” refer only to the payload data, not to the header.

These flags are written by the slave (module):

CTS CTS Flow-Control information of the module (same flag as RTS)

 0 the module is able to receive data

 1 the module is not able to receive data

RI Ring indicator. Set to 1 when a ring on an actual phone would be needed, e.g. in case of

an incoming call or SMS

DCD Data Carrier Detect

 1 the terminal is in command mode

 2 the terminal is in data mode (data connect, SMS text mode, file download)

These flags are written by the master (terminal):

RTS Flow-Control information of the terminal (same flag as CTS)

 0 the terminal is able to receive data

 1 terminal is not able to receive data

RI Ring indicator. Set to 1 when a ring on an actual phone would be needed, e.g. in case of

an incoming call or SMS

 Typically - but not necessarily - the module is the slave and the terminal the master. Most of the
RS232-flags are set to 0 if everything is OK. This means the slave can just send a 0 header if nothing is

going on, and does not need to start a transfer if the HW is set to automatically send 0 (see section 3.6).

 RES is reserved for future use.

 DSR, DCD, RI, DTR, RES are currently not supported. Any flag which is not supported shall be
ignored if set.

3.3 Byte ordering

The byte ordering of the header is LSB (Least Significant Byte is transmitted first) and cannot be changed during

runtime. For details refer to section 8.3. The bit ordering is described in the section 3.4.

SPI Interface - Application Note

UBX-13001919 - A Preliminary Page 9 of 34

 The header is read out starting from byte 0. See Figure 4 as an example.

Byte 3

(bits 24-31)

Byte 2

(bits 16-23)

Byte 1

(bits 8-15)

Byte 0

(bits 0-7)
Payload

Header and payload order according to section 3.2

Byte 0

(bits 0-7)

Byte 1

(bits 8-15)

Byte 2

(bits 16-23)

Byte 3

(bits 24-31)
Payload

Header and payload order as they are sent/received over the SPI lines

Figure 4: SPI-frame over the SPI lines with data format MSB (Most Significant Byte) first

3.4 Bit ordering

The bit ordering of the header and payload bytes is msb (most significant bit is transmitted first) and cannot be

changed during runtime. For details refer to section 8.3.

Example: the ASCII character ‘a’ (decimal 97, hexadecimal 0x61, binary 0110.0001) is transmitted as the

sequence 0,1,1,0,0,0,0,1. See Figure 6 as an example.

… 0 1 1 0 0 0 0 1 …

Figure 5: SPI-frame over the SPI data lines with data format msb first

3.5 SPI frame sizes

The SPI protocol is designed to work either with fixed or variable payload length. Variable frame sizes have been
used for smaller throughput. For HSPA, fixed frame sizes with 16 byte alignment (including header) provides

optimal performance, see section 8.3.

Consequently each SPI packet has a fixed frame size regardless of the amount of valid data to transmit.

Header (4 bytes) Payload (DEF_BUF_SIZE)

Figure 6: SPI fixed frame size

When the amount of data to be transferred is less than DEF_BUF_SIZE, the remaining bytes can have any
values.

Important SPI Header content:

 “Current data size” field: Amount of valid data within the SPI payload (value must be DEF_BUF_SIZE or less)

 “Next data size” field: always DEF_BUF_SIZE

Be aware that the SPI payload length is not aligned with the payload content. This means that if, for example, a

Layer 2 protocol like MUX (3GPP 27.010) is transferred, then a MUX frame might be split into two SPI packets if
it does not fit into one SPI packet. It can also happen that a SPI packet contains more than one MUX frame.

 It is the responsibility of the upper layers (Layer 2, etc.) to extract and reassemble their frames out of the

SPI packets. This is beyond the scope of this document and will not be covered here.

SPI Interface - Application Note

UBX-13001919 - A Preliminary Page 10 of 34

3.6 Invalidating SPI packets

Since the SPI protocol forces sending empty data, it is mandatory to clearly mark such invalid SPI packets.

To invalidate an outgoing SPI packet, set the header either to 0xffffffff or to 0x00000000.

The receiving party will act as follows:

 When receiving a header set to 0x00000000, the “Current data size” is 0: no data is received

 When receiving a header set to 0xffffffff, the “Current data size” as well as the “more data” bit are forced

to 0; all the other fields keep the values of the previously received valid frame

As an example, it can be used by a system keeping the RX line active or inactive during the data transfer without
really sending data.

Field 0x00000000 0xffffffff

RTS/CTS 0 State of previous frame

DTR/DSR 0 State of previous frame

DCD 0 State of previous frame

RI 0 State of previous frame

MORE 0 0

CURR_SIZE 0 0

Next_SIZE DEF_BUF_SIZE DEF_BUF_SIZE

Table 2: Behavior when receiving invalid SPI frames

3.7 Usage of RTS, CTS and MORE

The MORE, RTS and CTS flags define whether and how communication needs to be continued.

RTS / CTS are not used as HW flow control; they indicate the status of the higher layer buffer (the ability to

receive valid data). The functionality is therefore not exactly the same as RTS / CTS on a UART. RTS / CTS will not
stop the physical communication, they will only ensure that no valid data is sent from the master to the slave, or

vice versa, depending on whether RTS or CTS is signaled.

For example, if the slave signals CTS during data transfer, the master will stop sending valid data. It can still send
empty frames, but the slave will still be able to transmit data to the master.

At the beginning of each packet-transfer, master and slave check the state of their respective flags. The next

transfer starts directly if the Equation 1 returns 1:

(Master_able_to_receive && Slave_has_MORE)

| | (Slave_is_able_to_receive && Master_has_MORE)

Master_able_to_receive: RTS = 0 in master header

Master_has_MORE: MORE=1 in master header

Slave_is_able_to_receive: CTS = 0 in slave header

Slave_has_MORE: MORE = 1 in slave header

Equation 1: check of multiple packet transfer

SPI only allows a transfer in both directions at the same time.

 If Equation 1 returns 0 the transfer will be stopped as described in section 4.4.

 If one or both are not able to exchange data due to RTS/CTS, the next packet will be handled as described in

Table 3:

SPI Interface - Application Note

UBX-13001919 - A Preliminary Page 11 of 34

Master

RTS

Slave

MORE

Slave

CTS

Master

MORE

Next

Size
1

Actions

0 0 0 0 DEF No transfer

0 0 0 1 DEF Transfer

0 0 1 0 DEF No transfer; then slave initiates the transfer procedure if CTS=1
2

0 0 1 1 DEF Wait for CTS = 0; then slave initiates the transfer procedure
2

0 1 0 0 DEF Transfer

0 1 0 1 DEF Transfer

0 1 1 0 DEF Transfer with no data towards slave

0 1 1 1 DEF Transfer with no data towards slave; the master must delay sending data until
CTS=0; both sides can initiate the next transfer to signal RTS or CTS =0

1 0 0 0 DEF No transfer; then the master initiates the transfer procedure if RTS=1
2

1 0 0 1 DEF Transfer with no data towards the master

1 0 1 0 DEF No transfer

1 0 1 1 DEF Wait for CTS=0; then the slave initiates the transfer procedure
2

1 1 0 0 DEF Wait for RTS=0; then the master initiates the transfer procedure
2

1 1 0 1 DEF Transfer with no data towards the master; the slave must delay sending data
until RTS=0; both sides initiate the next transfer to signal RTS or CTS =0

1 1 1 0 DEF Wait for RTS=0; then the master initiates the transfer procedure
2

1 1 1 1 DEF As soon as the master or slave are able to receive, they will initiate the transfer
procedure according to the rules above

Table 3: Table of the MORE and flow control usage

If one side raises the flow control then the other side is not allowed to transmit data until the flow control is

removed. Removing flow control is done by sending an SPI packet with the relevant flag reset.

The side which must obey the flow control may only set the MORE-flag if it has data to transmit. Only after it has
received a packet indicating flow control removal it can continue sending data afterwards.

 When the flow control is signaled, it is the responsibility of the side exercising the flow control to signal its

removal. Polling the flow controlling side to check the status is allowed, but not necessary. As a

consequence SPI packets might be exchanged which contain only a valid header but no valid payload.

1
 DEF=DEF_BUF_SIZE

2
 This does not mean that the other side is not allowed to start a transfer, but it cannot send any data until the other side resets the RTS/CTS
flag. If one side has set the RTS or CTS line it is possible to continue the transfer in the other direction

SPI Interface - Application Note

UBX-13001919 - A Preliminary Page 12 of 34

3.8 State machines

3.8.1 Slave state machine

IDLE
Datasize = DEF_BUF_SIZE

PREP
Prepares data transfer
Set SPI_SRDY active

Data Tranfer

MRDY_FLAG=0

MRDY_FLAG=1 or

data to transmit

Master clock

End of Transfer
Clear SPI_SRDY

If ((more to send &&
RTS==0)

||

(more to receive &&
CTS==0))

False

Last clock sent

True

Figure 7: State Machine of the Slave

The slave starts up in inactive mode with a data size of DEF_BUF_SIZE.

The MRDY_FLAG will be set to 1 with the SPI_MRDY interrupt. It will be set to low before the transfer starts.

As soon as the slave gets an SPI_MRDY active interrupt or has data to transmit, it writes the HW-registers for

the next transfer. This means if the master starts its clock it will automatically send the data. The slave waits for

the end of the transfer signaled internally by the RX-interrupt. Now the slave checks the flow-control and more
flags. If transfers are true, the next transfer will be started, otherwise it returns to the start state.

SPI Interface - Application Note

UBX-13001919 - A Preliminary Page 13 of 34

3.8.2 Master state machine

IDLE

Datasize = DEF_BUF_SIZE

SPI_MRDY inactive

PREP

Set SPI_MRDY active

Data Tranfer

SRDY_FLAG=0

Start Master clock

SRDY_FLAG=1 or

data to transmit

Yes

End of Transfer
Clear SPI_SRDY

If ((more to send &&

RTS==0)
||

(more to receive &&

CTS==0))

False

Last clock sent

True Wait for
SPI_SRDY

SRDY_FLAG set?

No

Figure 8: State Machine of the Master

The master starts up in inactive mode with a data size of DEF_BUF_SIZE.

As soon as it receives an SPI_SRDY interrupt it will set the SRDY_FLAG = 1.

If the SRDY_FLAG is 1 or the master has data to transmit, it will set the SPI_MRDY line to active. If the
SRDY_FLAG is 0, it will wait for the slave to be ready to transmit data, causing a change of the SRDY_FLAG by

the SPI_SRDY active interrupt.

If the SRDY_FLAG is set, the master programs its registers and sets the SRDY_FLAG = 0 before starting the
transfer.

The RX-interrupt internally signals the end of the transfer. Now the master checks the flow-control and more

flags. If the Equation 1 is true the next transfer will be started, otherwise it will go back to the start state. The
master must reset the SPI_MRDY line at the end of the transfer.

SPI Interface - Application Note

UBX-13001919 - A Preliminary Page 14 of 34

4 Communication protocol
This section describes three scenarios:

 Slave initiated transfer

 Master initiated transfer with a sleeping slave

 Frame end

 Section 5 describes the error scenarios and the recovery mechanisms 5.

4.1 General

The master controls the SPI_SCLK and since data is shifted out only when the clock is applied, it is not necessary

to lower the SPI_MRDY signal after each frame. The master can hold this line high during the complete transfer
(multi-frame transfer); it must only ensure correct SPI_SRDY transition detection to activate the SPI_SCLK.

It is allowed for the master to lower SPI_MRDY after each SPI frame, but not recommended. Ensure that the

SPI_SCLK is deactivated after one SPI frame; this is not shown in the diagrams.

The SPI_SCLK must be active the whole time during one SPI frame size. The SPI frame size is known and fixed.

The master and the slave must be able to receive at least one SPI frame. It is not allowed to deactivate the

SPI_SCLK when a frame is transmitted.

 If the master lowers SPI_MRDY during an SPI frame, it must ensure that the ongoing transfer can be

correctly terminated. This means the SPI_SCLK should still be running and outputting data. This behavior

is not recommended, but does not cause any problems as the slave will not check the SPI_MRDY signal
during an ongoing transfer.

 The SPI_MRDY signal going low does not correspond to a multi-frame transfer end. A multi-frame

transfer end is signaled by the MORE flag. The transfer ends when this flag is not set, meaning that it is

the last frame.

4.2 Slave initiated transfer to the Master

Requirements: the interrupt is able to wake up the master on SPI_SRDY and the slave on SPI_MRDY signal

Figure 9: slave initiated data transfer

Starting from the state where the master is in sleep mode, the following actions will happen:

 The slave indicates to the master that it is ready send data by activating SPI_SRDY

 When the master is ready to send, it signalizes this by activating SPI_MRDY

 The master will activate the clock and the two processors will exchange the communication header and data

SPI_MRDY

SPI_SRDY

DATA EXCHG

2

4 5

Header Data Header

3
1

SPI Interface - Application Note

UBX-13001919 - A Preliminary Page 15 of 34

 If the data has been exchanged, the slave will deactivate SPI_SRDY to process the received information. The
master does not need to deactivate SPI_MRDY as it controls the SPI_SCLK

After preparation, the slave again activates SPI_SRDY and waits for SPI_SCLK activation. When the clock is

active, all the data will be transferred without intervention. If more data is to transferred (flag set in any of the
headers) the process will repeat from step 3.

4.3 Master initiates transfer with sleeping Slave

Requirements: the interrupt is able to wake the slave from sleep mode on SPI_MRDY.

Figure 10: Application processor initiated data transfer

 The master wakes the slave by setting the SPI_MRDY line active.

 As soon as the slave is awake it will signal it by activating SPI_SRDY.

 The master will activate the clock and the two processors will exchange the communication header and

data.

 If the data has been exchanged, the slave will deactivate SPI_SRDY to process the received information. The
master does not need to deactivate SPI_MRDY as it controls the SPI_SCLK.

 After the preparation, the slave will reactivate SPI_SRDY and wait for SPI_SCLK activation. When the clock

is active, all the data will be transferred without intervention. If there is more data to transfer (flag set in any
of the headers), the process will repeat from step 3.

4.4 Frame end

Figure 11: Transfer Termination

SPI_MRDY

SPI_SRDY

DATA EXCHG

2

1

Header Data

SPI_MRDY

SPI_SRDY

DATA EXCHG

1

2

 4 5

Header Data Header

3

SPI Interface - Application Note

UBX-13001919 - A Preliminary Page 16 of 34

In case of the last transfer (see protocol), the master will lower its SPI_MRDY. After the data-transfer is finished
the line must be low. If the slave has already set its SPI_SRDY line the master must raise its line to initiate the

next transfer (slave-waking-procedure).

If the data have been exchanged, the slave will deactivate SPI_SRDY to process the received information. This is
the normal behavior.

 After the last data-transfer is finished (detected by the end of the clock) the next transfer can be started by

generating an activating interrupt on the SPI_MRDY or the SPI_SRDY line

Figure 12: Transfer Termination – Slave restarts transmission

If the data have been exchanged, the slave will deactivate SPI_SRDY to process the received information. This is
the normal behavior.

The slave will indicate to the master that it is ready to send data by activating SPI_SRDY.

When the master is ready to send, it signalizes this by activating SPI_MRDY – Optional when SPI_MRDY is low
before.

In the example above, the slave indicates immediately after a transfer termination that it is ready to start

transmission again. In this case the slave will raise SDRY again, and the SPI_MRDY line of the master can be
either high or low at that moment. It must only ensure that the SPI_SRDY change will be detected correctly

(usually via interrupt).

SPI_MRDY

SPI_SRDY

DATA EXCHG

5 2

1

Header Data

3

4

SPI Interface - Application Note

UBX-13001919 - A Preliminary Page 17 of 34

5 Timing
The minimum time before starting the next data transfer is defined as shown in Figure 13 for SPI_MRDY (t

m_trans
)

and in Figure 14 for SPI_SRDY (t
s_trans

). Table 4 reports the minimum allowed values.

Figure 13: SPI_MRDY transition

Figure 14: SPI_SRDY transition

LISA-U1/LISA-U2 series modules are able to set the SPI_SRDY line to active within a maximum time (t
s_res

) once

the master sets the SPI_MRDY line to active, as shown in Figure 15. Table 4 reports the maximum values.

Figure 15: SPI_SRDY response

SPI_MRDY
(Input)

SPI_SRDY

(Output)

t
s_res

SPI_SRDY

(Output)

t
s_trans

SPI_MRDY

(Input)

t
m_trans

SPI Interface - Application Note

UBX-13001919 - A Preliminary Page 18 of 34

6 Troubleshooting
The following sections describe the possible error scenarios for an unsuccessful SPI transfer. An additional

dedicated error detection mechanism should be added to the system solution, otherwise the user may run into
synchronization issues in the higher layer protocols.

6.1 Fast change of RDY lines could not be detected

If the MORE flags are 0, but in the meantime new data arrives at one side, it will raise its RDY (S-/M-)RDY line

again. The time between setting the line low and high again might be too short to detect the interrupt;

therefore a minimum time for detecting the interrupt must be defined. See the minimum requirements in section
8.3. If the time constraints are not respected, a break in the protocol occurs (the SPI communication no longer

works).

6.2 Slave reboot outside SPI transfer

When the slave boots up it will check the SPI_MRDY line and start the next transfer immediately if the

SPI_MRDY line is active.

6.3 Slave reboot during SPI transfer

Invalid data received by the master; impact not known; for the next wanted transfers the slave will not react on
SPI_MRDY according to protocol and the master can detect a slave error. If the slave boots up it will check the

SPI_MRDY line and start the next transfer immediately if the SPI_MRDY line is active.

6.4 Master reboot outside SPI transfer

Depending on the settings, the slave may wait infinitely for the raise of SPI_MRDY or discard the frame that it
tries to transfer (see also section 6.6). As there might be some higher protocol running that cannot be easily

resumed after a master reboot, it is recommended that the application on the master side reset the slave, so

both sides will re-start in a defined state.

6.5 Master reboot during SPI transfer

This will lead to a break of the SPI clock. Depending on the settings, the slave may wait infinitely to finish the SPI
transfer or discard this SPI frame, see section 6.6. As typically a higher protocol is running that cannot be easily

resumed after a master reboot, it is recommended that the application on the master side reset the slave, so

both sides will re-start in a defined state.

6.6 Recovery mechanism for slave

As the transfer is under the full control of the master and is based on negotiated frame sizes, the slave shall be

enabled to detect a transmission problem. The slave shall cleanly end the ongoing transfer and resume normal

operation afterwards.

Possible problems at the master side for example:

 Master transmits less bytes than negotiated

 Master reboots during the transfer

SPI Interface - Application Note

UBX-13001919 - A Preliminary Page 19 of 34

As a result the SPI_SCLK would stop and the slave will not be able to finish its transfer. The slave will stay in the
transfer state for an indefinite time.

Slave state after a premature SPI_SCLK stop:

 SPI_SRDY will stay high as transfer is not finished (this means implicitly an SPI_MRDY interrupt will not be
answered with raising SPI_SRDY)

 Tx and Rx data for the broken transfer will not be handled at Slave side

The slave is not able to finish the transfer and will not react to subsequent master initiated transfer attempts. As

a consequence, the SPI communication will stop as the handshaking mechanism via SPI_MRDY/SPI_SRDY

interrupts no longer works.

With a timeout for SPI_SCLK breaks, the slave is capable of detecting a transmission problem and starting the

recovery mechanism. The timeout value shall be chosen according to the master SPI_SCLK timing (a defined

value cannot be given here).

Figure 16: Master transmits less bytes

Figure 17: Master reboot during transfer

Actions to be performed by the slave

 Leave transfer state (SPI_SRDY shall be lowered)

For the slave Tx data, the master has the following condition to detect a problem:

 Current Data size is bigger than the actual received bytes

Master Slave

M0 (2044 bytes) – reboot during transfer

S0 (2044 bytes)

Master Slave

M0 (100 bytes)

S0 (2044 bytes)

SPI Interface - Application Note

UBX-13001919 - A Preliminary Page 20 of 34

7 Protocol examples

7.1 Communication example

The SPI devices are used as an RS232 device. The terminal is the master and the module is the slave.

7.1.1 How to fill the header and data buffer - Example

After powering up the terminal and the module, the terminal starts the communication, enabling the error code

by sending AT+CMEE=2; the module answers OK:

The terminal raises SPI_MRDY. If the module raises SPI_SRDY it sends this header in bits:

0 0 0 0 11111111100 (Next data size = 2044)

0 0 0 0 00000001011 (Current data size = 11)

And this payload in bytes:

a t + c m e e = 2 \r \n 2033 following bytes

While sending, it receives from the module:

0 0 0 0 11111111100 (Next data size = 2044)

0 0 0 0 00000000000 (Current data size = 0)

With this payload:

2044 following bytes

The following bytes can have any values.

The module raises SPI_SRDY. Once the terminal raises SPI_MRDY and it starts providing the SPI clock, the
module sends this header in bits:

0 0 0 0 11111111100 (Next data size = 2044)

0 0 0 0 00000000110 (Current data size = 6)

With the payload

\r \n O K \r \n 2038 following bytes

While sending it receives from the terminal:

0 0 0 0 11111111100 (Next data size = 2044)

0 0 0 0 00000000000 (Current data size = 0)

With the payload in bytes:

2044 following bytes

The following bytes can have any values.

SPI Interface - Application Note

UBX-13001919 - A Preliminary Page 21 of 34

7.1.2 Multi-frame transfer example

This section shows how a data transfer could look. It describes the buffer sizes and shows how the setting of the

RTS / CTS flags stops the transfer.

The master raises SPI_MRDY line and sends a request to the slave. After the slave wakes up the transferred data
looks like this:

Transfer RTS/CTS MORE Next_Size Current Data Size

Master 0 0 2044 11

Slave 0 0 2044 0

The data transfer is finished.

The slave gets result from the network (5206 bytes) and raises the SPI_SRDY line to start the first transfer. The

transferred data looks like this:

Transfer RTS/CTS MORE Next_Size Current Data Size

Master 0 0 2044 0

Slave 0 1 2044 2044

The slave raises the SPI_SRDY line to start the next transfer. The transferred data looks like this:

Transfer RTS/CTS MORE Next_Size Current Data Size

Master 1 0 2044 0

Slave 0 1 2044 2044

The master has a problem with the buffer size and sets the RTS-flag – this should occur very rarely. This means

the transfer is finished until the next transfer. Both are back to Inactive Mode.

The master gets space in its buffers and raises the SPI_MRDY line to start the next transfer (the buffer size of

this transfer is the starting buffer-size DEF_BUF_SIZE:

Transfer RTS/CTS MORE Next_Size Current Data Size

Master 0 0 2044 0

Slave 0 1 2044 0

 No data is sent from slave to the master because the master has raised the RTS in 3.

The slave raises the SPI_SRDY line to start the next transfer. In the meantime the master gets 2602 bytes of new
data and passes the first 2044 with this transfer to the slave, there are still 558 left over. The slave also gets 16

new bytes to transfer. The transferred data looks like this:

Transfer RTS/CTS MORE Next_Size Current Data Size

Master 0 1 2044 2044

Slave 0 0 2044 1134

If both are finished and have nothing more to send, both more-flags are 0. The transfer has stopped and the

next data-size will be DEF_BUF_SIZE.

Transfer RTS/CTS MORE Next_Size Current Data Size

Master 0 0 2044 558

Slave 0 0 2044 0

The transfer is finished.

SPI Interface - Application Note

UBX-13001919 - A Preliminary Page 22 of 34

7.2 Flow control

7.2.1 Data transmission stopped

Figure 18: Flow control – Data transmission stopped

*: Flow control can also be removed by sending an empty frame

M4

M3 with RTS = 0
*

M2 with RTS = 1

Master Slave

M1

S1

S2

Empty frame

S3

Break

SPI Interface - Application Note

UBX-13001919 - A Preliminary Page 23 of 34

7.2.2 Data transmission continues

Figure 19: Flow control – Data transmission continues

Empty frame

Empty frame

Empty frame

S3

M6

M5 with RTS = 0

M2 with RTS = 1

Master Slave

M1

S1

S2

M3 with RTS = 1

M4 with RTS = 1

SPI Interface - Application Note

UBX-13001919 - A Preliminary Page 24 of 34

7.2.3 Both sides signal flow control

Figure 20: Flow control – both sides signaling

M5 with RTS = 1

M6 with RTS = 0

M7 with RTS = 0

Empty frame

Empty frame with RTS = 0

Empty frame with RTS = 1

S2

M1

S1

Empty frame

Empty frame with RTS= 1

M2 with RTS = 1

Master Slave

M3 with RTS = 1

M4 with RTS = 1

Break

Empty frame

Empty frame

SPI Interface - Application Note

UBX-13001919 - A Preliminary Page 25 of 34

7.3 MORE (transfer) condition

MORE condition is TRUE when:

 The master and slave have set the MORE flag and no flow control is signaled or only one side has signaled
flow control

 The master has set the MORE flag, the slave has not and neither signaled flow control

 The slave has set the MORE flag, the master has not and neither signaled flow control

 The master and/or slave must send an error indication

MORE condition is FALSE when:

 The master and slave have not set the MORE flag

 The master has set the MORE flag, the slave has not and the slave has signaled flow control

 The slave has set the MORE flag, the master has not and the master has signaled flow control

 The master and slave have set the MORE flag and both signaled flow control

SPI Interface - Application Note

UBX-13001919 - A Preliminary Page 26 of 34

8 Implementation comments
The LISA-U1/LISA-U2 series supports the specified protocol in slave mode. It is up to the customer to implement

the master side and use it to communicate with LISA-U1/LISA-U2 series.

8.1 SPI clock rates on LISA-U1/LISA-U2 series

The external master defines the baud rate. The achievable baud rates depend strongly on chip, pad and board
design. LISA-U1/LISA-U2 series slave mode is running with up to 26 MHz SPI master clock.

8.2 Estimation of available bandwidth

The analysis of bandwidth usage will concentrate on the case when both processors are active. This is the usual

situation when, for instance, an HSDPA download happens. This use case puts a high demand on the

bandwidth.

8.2.1 General considerations

Interrupt Load while Transferring Data:

The MORE and flow-control-flags (RTS, CTS) inform the receiver whether the next data-transfer is required. This
prevents the useless transfer of data.

At each transfer the following interrupts will be received:

 The master receives two interrupts: SPI_SRDY, and the Transfer Finished Interrupt TF (indicating that data
has been received and sent)

 The slave receives only the Transfer Finished Interrupt TF

DMA Load:

SPI transfers the data in both directions at the same time. Therefore 2 DMAs are needed.

The DMA can be configured according to the transfer-size of each transfer. It might make sense to store the
header to another part of the memory, by using the linked list feature LLI of the ARM-DMA. This causes the

DMA configuration to depend on the ARM.

This means the data size must be a multiple of the header size, to get the optimal DMA-usage.

The DMAs for SPI transfer shall get the highest priority in the system to achieve maximum throughput.

Latency:

The bigger the packet size, the higher the latency. The best compromise between achievable bandwidth and
latency must be found.

8.2.2 Dependency on different parts of SPI transmission

The net bandwidth of the SPI protocol is not only affected by the SPI clock used, but also strongly dependent on

the times needed from start of SPI transmission (SPI_SRDY/SPI_MRDY) until finally applying the SPI clock. Find

below the basic times contributing to the overall net bandwidth and a formula which can be used to evaluate
the net throughput based on the different inputs.

SPI Interface - Application Note

UBX-13001919 - A Preliminary Page 27 of 34

The net throughput can be calculated as follows:

][41],[],[],[

))43218)(()8)((())((][

usttBytesSPIheaderhBytespayloadpMHzSPIclockf

with

ttttfhpfhphppjitterfMbpsn

Equation 2: Net throughput calculation

Ideally it is assumed that the SPI clock is a continuous function during an SPI packet transfer. However, it is

possible that there are small pauses between some clock cycles due to the master needing to setup the SPI HW

more than once for an SPI packet. The jitter is a numeric value between 0-1 to account for this.

 Further reductions of the user data throughput due to higher layer protocols inside the payload are not

considered here. The equation can also be used for slave initiated and multi-packet transfer, it is

important to use the same reference points.

SRDY

MRDY

SCLK

t4

t31

t32

t3

t2t1

SPI Interface - Application Note

UBX-13001919 - A Preliminary Page 28 of 34

8.3 Settings for LISA-U1/LISA-U2 series driver

Table 4 describes the current settings of the SPI implementation for LISA-U1/LISA-U2 series.

Parameter Value

Role in SPI protocol Slave

SPI_SCLK frequency (f
master_clock

) 26 MHz

SPI_SCLK idle state Low (CPOL=0)

SPI_MRDY idle state Low

SPI_SRDY idle state Low

SPI_MISO idle state High

SPI_MOSI idle state High

Shift Data On rising clock edge (CPHA=1)

Latch Data On falling clock edge (CPHA=1)

Byte Endian-ness LSB (Least Significant Byte) is transmitted first

Bit Endian-ness msb (most significant bit) is transmitted first

HEADER_SIZE 4

DEF_BUF_SIZE 2044

MAX_BUF_SIZE 2044

SPI_MRDY transition (t
m_trans

): minimum time, lower values are not allowed 80 ns min, if LISA is in active mode (power saving disabled)

62 µs min, if LISA is in idle mode (power saving enabled)

SPI_SRDY transition (t
s_trans

): minimum time, lower values are not allowed 80 ns min

SPI_SRDY response (t
s_res

) 200 µs max, if LISA is in active mode (power saving disabled)

10 ms max, if LISA is in idle mode (power saving enabled)

Table 4: LISA-U1/LISA-U2 series SPI driver settings

 For more details on SPI timings, refer to LISA-U1 Series Data Sheet [1] and LISA-U2 Series Data Sheet [2].

SPI Interface - Application Note

UBX-13001919 - A Preliminary Page 29 of 34

9 Additional notes

9.1 State machines for implementation

This section describes the state machines. "Continue" is the corresponding evaluation result whether and how

the communication needs to be continued, see section 3.7 for details.

9.1.1 Master (Application Processor)

Figure 21: Master-side state machine

Timer still running
&& SDRY interrupt

outstanding

SRDY interrupt Tx Request

IDLE MRDY Low

Prepare Data + Prepare

Header + Prepare DMA

Check if SRDY High interrupt

has occurred or timeout

Raise MRDY
and start timer

Timeout

Handling

Enable DMA

Set MRPS and TPS

SRDY High
interrupt

Transfer State

Activate SCLK

Continue?
NO YES

Deactivate SCLK

Optional: Lower MRDY

End of Transfer

SPI Interface - Application Note

UBX-13001919 - A Preliminary Page 30 of 34

9.1.2 Slave (LISA-U1/LISA-U2 series module)

Figure 22: Slave-side state machine

 The slave (LISA-U1/LISA-U2 series module) does not know if a master is connected and available for the

communication. To prevent the communication getting stuck when the Master is missing, the TX Request

(in Figure 22) is generated only after the Master detection, that is after the first transmission initiated by

Master.

As a general rule, the Master must send an AT command at the first use of the SPI interface (after boot),

to allow subsequent data transmission initiated by the slave (e.g. Unsolicited Result Codes). Otherwise, the

data is buffered in the slave (e.g. Unsolicited Result Codes), and it is sent to the master only when the
master initiates the first transfer.

Timer still running
&& SCLK inactive

MRDY interrupt Tx Request

IDLE SRDY Low

Prepare Data + Prepare

Header + Prepare and enable

DMA + Set MRPS and TPS

Wait for SCLK or timeout

Raise SRDY and
start timer

Timeout
Handling

SCLK active

Transfer State

Continue?
NO YES

Lower SRDY

End of Transfer

SCLK inactive

SPI Interface - Application Note

UBX-13001919 - A Preliminary Page 31 of 34

9.2 Pseudo code

As an example, here is the pseudo code of a reference master SPI device firmware:

Receive data:

decode incoming packet (from the SPI hw):

read the header (4 bytes) from the lower level driver

if the received header is dummy (ffffffff), then

 set all header to 0

if outgoing CTS is 0 and incoming MORE is 1, or incoming CTS is 0 and outgoing MORE is 1, then

 set flag that the SPI-Transfer can/should be started

if the right amount of data (not less than a complete SPI buffer) has been received, then

 set flag that the SPI-Transfer can/should be started

if the header says the payload is non-null, then

 read it from the lower level driver

in case:

- keep counting the lost bytes

- Mark the copied HW buffer as free for reuse

Send data:

encode outgoing packet (from the SIO buffer to the SPI hw):

if previous incoming CTS was 0 then

 read the data to be sent (from upper layer buffer);

else

 No data to transmit, so do not move pointer inside SIO buffer

evaluate and set (in the outgoing SPI header) the current data size

if data to be sent does not fit a single SPI frame, then

 set the "next data size" and the "more" bit in the outgoing SPI header.

if no data to be sent, then

 set all the outgoing packet to FF, return.

else

 copy the proper amount of data from the SIO buffer to the outgoing packet;

 clean the unused part of the frame.

enable sending of the data, properly clearing/resetting any flags/semaphores.

SPI Interface - Application Note

UBX-13001919 - A Preliminary Page 32 of 34

10 SPI debug command +USPITRACE
The command activates the SPI trace (debug) capabilities, that are by default disabled.

When active, the SPI trace is part of the Primary Log data [3].

 The command is used only for testing / debugging purpose.

Type Syntax Response Example

Set AT+USPITRACE=<trace_mode>[,<outpu
t_size>]

OK AT+USPITRACE=1,2048

OK

Read AT+USPITRACE? +USPITRACE: <trace_mode>,<output_si
ze>

OK

+USPITRACE: 0,2044

OK

Test AT+USPITRACE=? +USPITRACE=<trace-mode>: (list of
supported <trace_mode>), <output-
size>: (list of supported <output_size>)

OK

+USPITRACE=<trace-mode>: (0-3),
<output-size>: (1-2048)

OK

10.1 Defined Values

Parameter Type Description

<trace_mode> Number Trace level to set

 0: SPI debug off

 1: SPI debug on, level 1 (SPI uplink/downlink data dump)

 2: SPI debug on, level 2 (SPI uplink/downlink data dump plus SPI flow control

trace)

 3: SPI debug on, level 3 (only SPI flow control trace)

<output_size> Number Maximum size of a uplink/downlink data block that can be dumped in a single
read/write operation

 0-2048: supported size range, 2044 is the default value (when the parameter

is omitted)

The SPI uplink/downlink data dump (<trace mode>= 1 or 2) is present in the Primary Log data in the form of an

SDL message trace for the process sio_glue; the state is GLUE_S_ACT and the events GLUE_E_UL and

GLUE_E_DL.

The SPI flow control trace (<trace mode>= 2 or 3) provides support in the SPI protocol analysis in reference to

the flow control event; it is present in the Primary Log data in the form of ASCII strings, starting with the sub-
string: “[SPI FC]: timestamp is:”. The timestamp unit is 1/26 µs.

SPI Interface - Application Note

UBX-13001919 - A Preliminary Page 33 of 34

Related documents
[1] u-blox LISA-U1 series Data Sheet, Docu No UBX-13002048

[2] u-blox LISA-U2 series Data Sheet, Docu No UBX-13001734

[3] LISA-U Series System Integration Manual, Docu No UBX-13001118

All these documents are available on our homepage (http://www.u-blox.com).

 For regular updates to u-blox documentation and to receive product change notifications, register on our

homepage.

Revision history

Revision Date Name Status / Comments

- Apr. 08, 2011 mtom Initial release

1 May 26, 2011 mtom Improved the SPI and Byte ordering description

2 Jan. 08, 2012 lpah Extended the document applicability to LISA-U2 series and removed
LISA-H1 series

Added the pseudo code of a reference master SPI device firmware

3 Jul. 18, 2012 mben Added +USPITRACE debug command description

3 Aug. 23, 2012 mtom Better representation of bits in section 7.1.1

(Last revision with docu number 3G.G2-CS-11000)

A Aug 27, 2013 mben / lpah Improved the section 9.1.2 about master detection

http://www.u-blox.ch/

SPI Interface - Application Note

UBX-13001919 - A Preliminary Page 34 of 34

Contact
For complete contact information visit us at www.u-blox.com

u-blox Offices

North, Central and South America

u-blox America, Inc.

Phone: +1 703 483 3180

E-mail: info_us@u-blox.com

Regional Office West Coast:

Phone: +1 408 573 3640

E-mail: info_us@u-blox.com

Technical Support:

Phone: +1 703 483 3185

E-mail: support_us@u-blox.com

Headquarters
Europe, Middle East, Africa

u-blox AG

Phone: +41 44 722 74 44
E-mail: info@u-blox.com

Support: support@u-blox.com

Asia, Australia, Pacific

u-blox Singapore Pte. Ltd.

Phone: +65 6734 3811

E-mail: info_ap@u-blox.com
Support: support_ap@u-blox.com

Regional Office Australia:

Phone: +61 2 8448 2016
E-mail: info_anz@u-blox.com

Support: support_ap@u-blox.com

Regional Office China (Beijing):

Phone: +86 10 68 133 545
E-mail: info_cn@u-blox.com

Support: support_cn@u-blox.com

Regional Office China (Shenzhen):

Phone: +86 755 8627 1083

E-mail: info_cn@u-blox.com

Support: support_cn@u-blox.com

Regional Office India:

Phone: +91 959 1302 450

E-mail: info_in@u-blox.com
Support: support_in@u-blox.com

Regional Office Japan:

Phone: +81 3 5775 3850
E-mail: info_jp@u-blox.com

Support: support_jp@u-blox.com

Regional Office Korea:

Phone: +82 2 542 0861
E-mail: info_kr@u-blox.com

Support: support_kr@u-blox.com

Regional Office Taiwan:

Phone: +886 2 2657 1090

E-mail: info_tw@u-blox.com

Support: support_tw@u-blox.com

http://www.u-blox.com/
mailto:info_us@u-blox.com
mailto:support_us@u-blox.com
mailto:support@u-blox.com
mailto:support_ap@u-blox.com
mailto:info_in@u-blox.com
mailto:support_in@u-blox.com

	Contents
	1 Introduction
	2 HW Interface
	3 Protocol format
	3.1 General
	3.2 SPI header
	3.3 Byte ordering
	3.4 Bit ordering
	3.5 SPI frame sizes
	3.6 Invalidating SPI packets
	3.7 Usage of RTS, CTS and MORE
	3.8 State machines
	3.8.1 Slave state machine
	3.8.2 Master state machine

	4 Communication protocol
	4.1 General
	4.2 Slave initiated transfer to the Master
	4.3 Master initiates transfer with sleeping Slave
	4.4 Frame end

	5 Timing
	6 Troubleshooting
	6.1 Fast change of RDY lines could not be detected
	6.2 Slave reboot outside SPI transfer
	6.3 Slave reboot during SPI transfer
	6.4 Master reboot outside SPI transfer
	6.5 Master reboot during SPI transfer
	6.6 Recovery mechanism for slave

	7 Protocol examples
	7.1 Communication example
	7.1.1 How to fill the header and data buffer - Example
	7.1.2 Multi-frame transfer example

	7.2 Flow control
	7.2.1 Data transmission stopped
	7.2.2 Data transmission continues
	7.2.3 Both sides signal flow control

	7.3 MORE (transfer) condition

	8 Implementation comments
	8.1 SPI clock rates on LISA-U1/LISA-U2 series
	8.2 Estimation of available bandwidth
	8.2.1 General considerations
	8.2.2 Dependency on different parts of SPI transmission

	8.3 Settings for LISA-U1/LISA-U2 series driver

	9 Additional notes
	9.1 State machines for implementation
	9.1.1 Master (Application Processor)
	9.1.2 Slave (LISA-U1/LISA-U2 series module)

	9.2 Pseudo code

	10 SPI debug command +USPITRACE
	10.1 Defined Values

	Related documents
	Revision history
	Contact

