

ZED-F9H-01B

Module for heading applications Professional grade

Data sheet

Abstract

This data sheet describes the ZED-F9H module for heading applications. The ZED-F9H module is designed to provide best possible heading information to applications where precise attitude is of greatest importance. It is suitable for UAV, trucks, heavy vehicles and antenna alignment applications and provides heading accuracy independent of vehicle motion and calibration.

Document information

Title	ZED-F9H-01B	
Subtitle	Module for heading applications	
Document type	Data sheet	
Document number	UBX-21025012	
Revision and date	R05	21-Mar-2024
Disclosure restriction	C1-Public	

Product status	Corresponding content status	
Functional sample	Draft	For functional testing. Revised and supplementary data will be published later.
In development / prototype	Objective specification	Target values. Revised and supplementary data will be published later.
Engineering sample	Advance information	Data based on early testing. Revised and supplementary data will be published later.
Initial production	Early production information	Data from product verification. Revised and supplementary data may be published later.
Mass production / End of life	Production information	Document contains the final product specification.

This document applies to the following products:

Product name	Type number	FW version	IN/PCN reference	Product status
ZED-F9H	ZED-F9H-01B-00	HDG 1.13	UBX-23000084	Mass production

u-blox or third parties may hold intellectual property rights in the products, names, logos and designs included in this document. Copying, reproduction, or modification of this document or any part thereof is only permitted with the express written permission of u-blox. Disclosure to third parties is permitted for clearly public documents only.

The information contained herein is provided "as is" and u-blox assumes no liability for its use. No warranty, either express or implied, is given, including but not limited to, with respect to the accuracy, correctness, reliability and fitness for a particular purpose of the information. This document may be revised by u-blox at any time without notice. For the most recent documents, visit www.u-blox.com.

Copyright © 2024, u-blox AG.

Contents

1 Functional description	4
1.1 Overview	4
1.2 Performance	4
1.3 Supported GNSS constellations	5
1.4 Supported GNSS augmentation systems	6
1.4.1 Quasi-Zenith Satellite System (QZSS)	6
1.4.2 Satellite-based augmentation system (SBAS)	
1.5 Broadcast navigation data and satellite signal measurements	7
1.6 Supported protocols	7
2 System description	8
2.1 Block diagram	8
3 Pin definition	9
3.1 Pin assignment	9
4 Electrical specification	12
4.1 Absolute maximum ratings	
4.2 Operating conditions	
4.3 Indicative power requirements	13
5 Communications interfaces	14
5.1 UART	14
5.2 SPI	14
5.3 I2C	15
5.4 USB	
5.5 Default interface settings	17
6 Mechanical specification	18
7 Qualifications and approvals	20
8 Labeling and ordering information	21
8.1 Product labeling	
8.2 Explanation of product codes	
8.3 Ordering codes	21
Related documents	22
Revision history	23

1 Functional description

1.1 Overview

The ZED-F9H-01B positioning module features the u-blox F9 receiver platform, which provides multi-band GNSS to high-volume industrial applications. The ZED-F9H-01B has integrated u-blox multi-band moving-base RTK technology for high GNSS-based heading accuracy. The ZED-F9H-01B can only be used in combination with a ZED-F9P base in a moving base with a fixed baseline application to derive accurate heading information.

No absolute position information is output in any UBX or NMEA message.

Moving base allows both base and rover to move while computing a centimeter-level accurate position between them. It is well suited to attitude-sensing applications where both base and rover modules are mounted on the same moving platform and the relative position is used to derive attitude information for the platform.

See the ZED-F9P Moving Base application note [5] for more information on designing in and using moving base.

1.2 Performance

Parameter Specification		·	
Receiver type	Multi-band GNSS high precision receiver		
Frequency of time pulse signal		0.25 Hz to 10 MHz (configurable)	
Operational limits ¹	Dynamics	≤ 4 g	
·	Altitude	80,000 m	
	Velocity	500 m/s	
Velocity accuracy ²		0.05 m/s	
Dynamic heading accuracy ²		0.3 deg	

Table 1: ZED-F9H-01B specifications

GNSS ³		GPS+GLO+GAL+BDS	GPS+GLO+GAL	GPS+GAL	GPS+GLO	GPS+BDS	GPS
Acquisition ⁴	Cold start	25 s	25 s	30 s	26 s	28 s	30 s
	Hot start	2 s	2 s	2 s	2 s	2 s	2 s
	Aided start ⁵	2 s	2 s	2 s	2 s	2 s	2 s

Table 2: ZED-F9H-01B performance in different GNSS modes

¹ Assuming Airborne 4 g platform

 $^{^{2}~50\%}$ at 30 m/s for dynamic operation

³ GPS used in combination with QZSS and SBAS

⁴ Commanded starts. All satellites at -130 dBm. Measured at room temperature.

 $^{^{\,5}\,}$ Dependent on the speed and latency of the aiding data connection, commanded starts

GNSS ³		GPS+GLO+GAL+BDS
Sensitivity ⁶	Tracking and nav.	-167 dBm
•	Reacquisition	-160 dBm
	Cold start	-148 dBm
	Hot start	-157 dBm

Table 3: ZED-F9H-01B sensitivity

GNSS	GPS+GLO+GAL+BD	S GPS+GLO+GAL	GPS+GAL	GPS+GLO	GPS+BDS	GPS
Max navigation update rate	8 Hz	8 Hz	10 Hz	10 Hz	10 Hz	10 Hz
Convergence time ⁷	< 10 s	< 10 s	< 10 s	< 10 s	< 10 s	< 30 s
Heading accuracy	0.4 deg	0.4 deg	0.4 deg	0.4 deg	0.4 deg	0.4 deg

Table 4: ZED-F9H-01B moving base RTK performance in different GNSS modes

Figure 1: ZED-F9H-01B moving base RTK heading accuracy versus baseline length

In a moving base application, and especially when the antennas are mounted on the same platform, it is recommended to use identical antennas. Furthermore it is recommended these antennas are mounted with identical orientation, as this will minimize effects of phase center variation.

1.3 Supported GNSS constellations

The ZED-F9H-01B GNSS modules are concurrent GNSS receivers that can receive and track multiple GNSS constellations. Owing to the multi-band RF front-end architecture, all four major GNSS constellations (GPS, GLONASS, Galileo and BeiDou) plus SBAS and QZSS satellites can be

⁶ Demonstrated with a good external LNA. Measured at room temperature.

Depends on atmospheric conditions, baseline length, GNSS antenna, multipath conditions, satellite visibility and geometry

received concurrently. All satellites in view can be processed to derive accurate heading information when used with correction data. If power consumption is a key factor, the receiver can be configured for a subset of GNSS constellations.

The QZSS system shares the same frequency bands with GPS and can only be processed in conjunction with GPS.

To benefit from multi-band signal reception, dedicated hardware preparation must be made during the design-in phase. See the Integration manual [1] for u-blox design recommendations.

The ZED-F9H-01B supports the GNSS and their signals as shown in Table 5.

GPS / QZSS	GLONASS	Galileo	BeiDou	NavIC
L1C/A (1575.420 MHz)	L1OF (1602 MHz + k*562.5 kHz, k = –7,,6)	E1-B/C (1575.420 MHz)	B1I (1561.098 MHz)	-
L2C (1227.600 MHz)	L2OF (1246 MHz + k*437.5 kHz, k = -7,,6)	E5b (1207.140 MHz)	B2I (1207.140 MHz)	-

Table 5: Supported GNSS signals on ZED-F9H-01B

The ZED-F9H-01B can use the u-blox AssistNow™ Online service which provides GNSS assistance information.

1.4 Supported GNSS augmentation systems

1.4.1 Quasi-Zenith Satellite System (QZSS)

The Quasi-Zenith Satellite System (QZSS) is a regional navigation satellite system that provides positioning services for the Pacific region covering Japan and Australia. The ZED-F9H-01B is able to receive and track QZSS L1 C/A and L2C signals concurrently with GPS signals, resulting in better availability especially under challenging signal conditions, e.g. in urban canyons.

The ZED-F9H-01B is also able to receive the QZSS L1S signal in order to use the SLAS (Sub-meter Level Augmentation Service) which is an augmentation technology that provides correction data for pseudoranges. Ground monitoring stations positioned in Japan calculate separate corrections for each visible satellite and broadcast this data to the user via QZSS satellites. The correction stream is transmitted on the L1 frequency (1575.42 MHz).

QZSS can be enabled only if GPS operation is also configured.

1.4.2 Satellite-based augmentation system (SBAS)

The ZED-F9H-01B supports SBAS (including WAAS in the US, EGNOS in Europe, L1Sb(QZSS SBAS) in Japan and GAGAN in India) to deliver improved location accuracy within the regions covered. However, the additional inter-standard time calibration step used during SBAS reception results in degraded time accuracy overall.

1.4.3 Differential GNSS (DGNSS)

A ZED-F9H-01B operating in moving base rover mode can decode the following RTCM messages provided by a ZED-F9P moving base:

Message type	Description	
RTCM 1074	GPS MSM4	
RTCM 1077	GPS MSM7	
RTCM 1084	GLONASS MSM4	

Message type	Description
RTCM 1087	GLONASS MSM7
RTCM 1094	Galileo MSM4
RTCM 1097	Galileo MSM7
RTCM 1124	BeiDou MSM4
RTCM 1127	BeiDou MSM7
RTCM 1230	GLONASS code-phase biases
RTCM 4072.0	Reference station PVT (u-blox proprietary RTCM Message)

Table 6: Supported ZED-F9H input RTCM messages

1.5 Broadcast navigation data and satellite signal measurements

The ZED-F9H-01B can output all the GNSS broadcast data upon reception from tracked satellites. This includes all the supported GNSS signals as well as the QZSS and SBAS augmentation services. The UBX-RXM-SFRBX message provides this information, see the Interface description [2] for the UBX-RXM-SFRBX message specification. The receiver can provide satellite signal information in a form compatible with the Radio Resource LCS Protocol (RRLP) [4].

1.6 Supported protocols

The ZED-F9H-01B supports the following protocols:

Protocol	Туре
UBX	Input/output, binary, u-blox proprietary
NMEA 4.11, 4.10 (default), 4.0, 2.3, and 2.1	Input/output, ASCII
RTCM 3.3	Input, binary

Table 7: Supported protocols

For specification of the protocols, see the Interface description [2].

2 System description

2.1 Block diagram

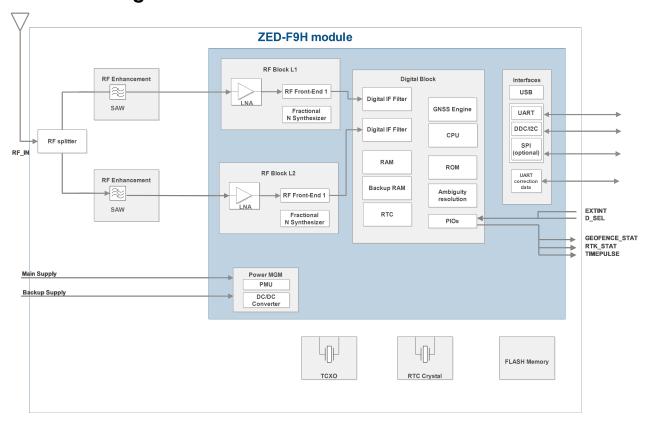


Figure 2: ZED-F9H-01B block diagram

T

An active antenna is mandatory with the ZED-F9H-01B. For more information, see the Integration manual [1].

3 Pin definition

3.1 Pin assignment

The pin assignment of the ZED-F9H-01B module is shown in Figure 3. The defined configuration of the PIOs is listed in Table 8.

For detailed information on pin functions and characteristics, see the Integration manual [1].

 \overline{r} The ZED-F9H-01B is an LGA package with the I/O on the outside edge and central ground pads.

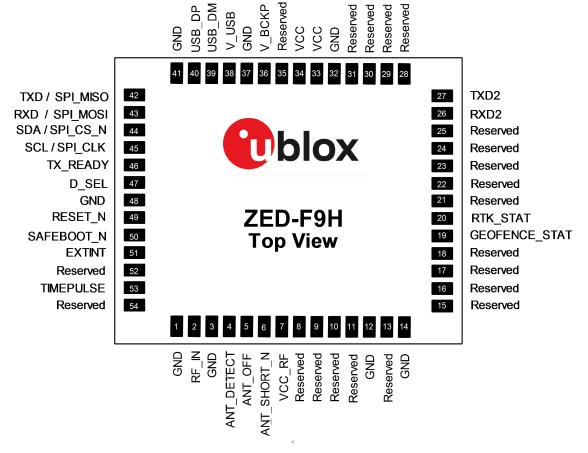


Figure 3: ZED-F9H-01B pin assignment

Name	I/O	Description
GND	-	Ground
RF_IN	I	RF input
GND	-	Ground
ANT_DETECT	I	Active antenna detect - default active high
ANT_OFF	0	External LNA disable - default active high
ANT_SHORT_N	I	Active antenna short detect - default active low
VCC_RF	0	Voltage for external LNA
Reserved	-	Reserved
Reserved	_	Reserved
	GND RF_IN GND ANT_DETECT ANT_OFF ANT_SHORT_N VCC_RF Reserved	GND - RF_IN I GND - ANT_DETECT I ANT_OFF O ANT_SHORT_N I VCC_RF O Reserved -

Pin no.	Name	1/0	Description
10	Reserved	_	Reserved
11	Reserved	-	Reserved
12	GND	-	Ground
13	Reserved	-	Reserved
14	GND	-	Ground
15	Reserved	-	Reserved
16	Reserved	-	Reserved
17	Reserved	-	Reserved
18	Reserved	-	Reserved
19	GEOFENCE_STAT	0	Geofence status, user defined
20	RTK_STAT	0	RTK status:
			0 = RTK fixed
			blinking = receiving and using corrections
			1 = no corrections
21	Reserved	-	Reserved
22	Reserved	-	Reserved
23	Reserved	-	Reserved
24	Reserved	-	Reserved
25	Reserved	-	Reserved
26	RXD2	I	Correction UART input
27	TXD2	0	Correction UART output
28	Reserved	-	Reserved
29	Reserved	-	Reserved
30	Reserved	-	Reserved
31	Reserved	-	Reserved
32	GND	-	Ground
33	VCC	I	Voltage supply
34	VCC	I	Voltage supply
35	Reserved	-	Reserved
36	V_BCKP	I	Backup supply voltage
37	GND	_	Ground
38	V_USB	I	USB supply
39	USB_DM	I/O	USB data
40	USB_DP	I/O	USB data
41	GND	-	Ground
42	TXD/SPI_SDO	0	Host UART output if D_SEL = 1(or open). SPI_SDO if D_SEL = 0
43	RXD/SPI_SDI	I	Host UART input if D_SEL = 1(or open). SPI_SDI if D_SEL = 0
44	SDA/SPI_CS_N	I/O	I2C Data if D_SEL = 1 (or open). SPI Chip Select if D_SEL = 0
45	SCL/SPI_CLK	1/0	I2C Clock if D_SEL = 1(or open). SPI Clock if D_SEL = 0
46	TX_READY	0	TX_Buffer full and ready for TX of data
47	D_SEL	ı	Interface select for pins 42-45
48	GND		Ground
49	RESET_N		RESET_N
			===!1

Pin no.	Name	1/0	Description
51	EXTINT	1	External interrupt pin
52	Reserved	-	Reserved
53	TIMEPULSE	0	Time pulse
54	Reserved	-	Reserved

Table 8: ZED-F9H-01B pin assignment

4 Electrical specification

4.1 Absolute maximum ratings

CAUTION. Risk of device damage. Exceeding the absolute maximum ratings may affect the lifetime and reliability of the device or permanently damage it. Do not exceed the absolute maximum ratings.

This product is not protected against overvoltage or reversed voltages. Use appropriate protection to avoid device damage from voltage spikes exceeding the specified boundaries.

Parameter	Symbol	Condition	Min	Max	Units
Power supply voltage	VCC		-0.5	3.6	V
Voltage ramp on VCC ⁸			20	8000	µs/V
Backup battery voltage	V_BCKP		-0.5	3.6	V
Voltage ramp on V_BCKP ⁸			20		μs/V
Input pin voltage	Vin	VCC ≤ 3.1 V	-0.5	VCC + 0.5	V
		VCC > 3.1 V	-0.5	3.6	V
VCC_RF output current	ICC_RF			200	mA
Supply voltage USB	V_USB		-0.5	3.6	V
USB signals	USB_DM, USB_DP		-0.5	V_USB + 0.	5 V
Input power at RF_IN	Prfin	source impedance = 50 Ω, continuous wave		10	dBm
Storage temperature	Tstg		-40	+85	°C
					_

Table 9: Absolute maximum ratings

4.2 Operating conditions

Extreme operating temperatures can significantly impact the specified values. If an application operates near the min or max temperature limits, ensure the specified values are not exceeded.

Parameter	Symbol	Min	Typical	Max	Units	Condition
Power supply voltage	VCC	2.7	3.0	3.6	V	
Backup battery voltage	V_BCKP	1.65		3.6	V	
Backup battery current ^{9, 10}	I_BCKP		45		μΑ	V_BCKP = 3 V, VCC = 0 V
SW backup current ¹⁰	I_SWBCKP		1.4		mA	
Input pin voltage range	Vin	0		VCC	V	
Digital IO pin low level input voltage	Vil			0.4	V	
Digital IO pin high level input voltage	Vih	0.8 * VCC			V	
Digital IO pin low level output voltage	Vol			0.4	V	IoI = 2 mA ¹¹
Digital IO pin high level output voltage	Voh	VCC - 0.4			V	loh = 2 mA ¹¹

⁸ Exceeding the ramp speed may permanently damage the device

⁹ To measure the I_BCKP the receiver should first be switched on, i.e. VCC and V_BCKP is available. Then set VCC to 0 V while the V_BCKP remains available. Afterward measure the current consumption at the V_BCKP.

 $^{^{10}\,\,}$ The value has been characterized at 25 °C ambient temperature.

¹¹ TIMEPULSE has 4 mA current drive/sink capability

Symbol	Min	Typical	Max	Units	Condition
lpin			5	mA	
VCC_RF		VCC - 0.1		V	
ICC_RF			50	mA	
NFtot		9.5		dB	
Ext_gain	17		50	dB	
Topr	-40	+25	+85	°C	
	Ipin VCC_RF ICC_RF NFtot Ext_gain	Ipin VCC_RF ICC_RF NFtot Ext_gain 17	Ipin	Ipin 5 VCC_RF VCC-0.1 ICC_RF 50 NFtot 9.5 Ext_gain 17 50	Ipin 5 mA VCC_RF VCC-0.1 V ICC_RF 50 mA NFtot 9.5 dB Ext_gain 17 50 dB

Table 10: Operating conditions

4.3 Indicative power requirements

Table 11 provides examples of typical current requirements when using a cold start command. The given values are total system supply current for a possible application including RF and baseband sections.

All values in Table 11 have been measured at 25 °C ambient temperature.

The actual power requirements vary depending on the FW version used, external circuitry, number of satellites tracked, signal strength, type and time of start, duration, and conditions of test.

Symbol	Parameter	Conditions	GPS+GLO (+GAL+BDS	GPS .	Unit
I _{PEAK}	Peak current	Acquisition	130	120	mA
I _{VCC} ¹³	VCC current	Acquisition	90	75	mA
I _{VCC} ¹³	VCC current	Tracking	85	70	mA

Table 11: Currents to calculate the indicative power requirements

¹² Only valid for GPS

¹³ Simulated GNSS signal

5 Communications interfaces

The ZED-F9H-01B has several communications interfaces 14, including UART, SPI, I2C and USB.

All the inputs have internal pull-up resistors in normal operation and can be left open if not used. All the PIOs are supplied by VCC, therefore all the voltage levels of the PIO pins are related to VCC supply voltage.

5.1 UART

The UART interfaces support configurable baud rates. See the Integration manual [1].

Hardware flow control is not supported.

The UART1 is enabled if D SEL pin of the module is left open or "high".

Symbol	Parameter	Min	Max	Unit
R _u	Baud rate	9600	921600	bit/s
Δ_{Tx}	Tx baud rate accuracy	-1%	+1%	-
Δ_{Rx}	Rx baud rate tolerance	-2.5%	+2.5%	-

Table 12: ZED-F9H-01B UART specifications

5.2 SPI

The SPI interface is disabled by default. The SPI interface shares pins with UART and I2C and can be selected by setting D_SEL = 0. The SPI interface can be operated in peripheral mode only. The maximum transfer rate using SPI is 125 kB/s and the maximum SPI clock frequency is 5.5 MHz.

The SPI timing parameters for peripheral operation are defined in Figure 4. Default SPI configuration is CPOL = 0 and CPHA = 0.

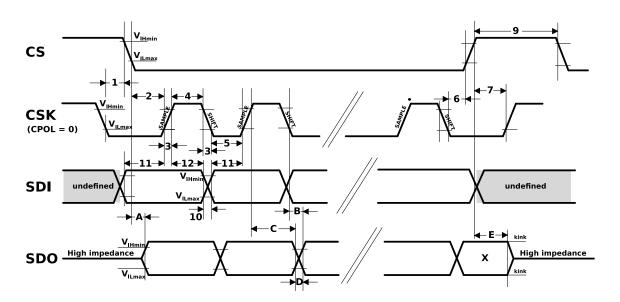


Figure 4: ZED-F9H-01B SPI specification mode 1: CPHA=0 SCK = 5.33 MHz

¹⁴ The signal names and related terms have been replaced with new terminology in this document.

Symbol	Parameter	Min	Max	Unit
1	CS deassertion hold time	23	-	ns
2	Chip select time (CS to SCK)	20	-	ns
3	SCK rise/fall time	-	7	ns
4	SCK high time	24	-	ns
5	SCK low time	24	-	ns
6	Chip deselect time (SCK falling to CS)	30	-	ns
7	Chip deselect time (CS to SCK)	30	-	ns
9	CS high time	32	-	ns
10	SDI transition time	-	7	ns
11	SDI setup time	16	-	ns
12	SDI hold time	24	-	ns

Table 13: SPI peripheral input timing parameters 1 - 12

Symbol	Parameter	Min	Max	Unit
A	SDO data valid time (CS)	12	40	ns
В	SDO data valid time (SCK), weak driver mode	15	40	ns
С	SDO data hold time	100	140	ns
D	SDO rise/fall time, weak driver mode	0	5	ns
E	SDO data disable lag time	15	35	ns

Table 14: SPI peripheral timing parameters A - E, 2 pF load capacitance

Symbol	Parameter	Min	Max	Unit
Α	SDO data valid time (CS)	16	55	ns
В	SDO data valid time (SCK), weak driver mode	20	55	ns
С	SDO data hold time	100	150	ns
D	SDO rise/fall time, weak driver mode	3	20	ns
E	SDO data disable lag time	15	35	ns

Table 15: SPI peripheral timing parameters A - E, 20 pF load capacitance

Symbol	Parameter	Min	Max	Unit
A	SDO data valid time (CS)	26	85	ns
В	SDO data valid time (SCK), weak driver mode	30	85	ns
С	SDO data hold time	110	160	ns
D	SDO rise/fall time, weak driver mode	13	45	ns
E	SDO data disable lag time	15	35	ns

Table 16: SPI peripheral timing parameters A - E, 60 pF load capacitance

5.3 I2C

An I2C interface is available for communication with an external host CPU in I2C Fast-mode. Backwards compatibility with Standard-mode I2C bus operation is not supported. The interface can be operated only in peripheral mode with a maximum bit rate of 400 kbit/s. The interface can make use of clock stretching by holding the SCL line LOW to pause a transaction. In this case, the bit transfer rate is reduced. The maximum clock stretching time is 20 ms.

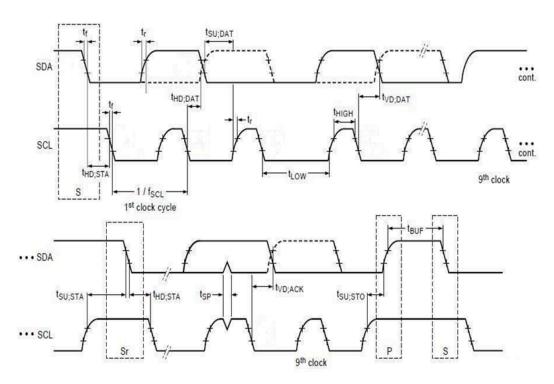


Figure 5: ZED-F9H-01B I2C peripheral specification

		I2C Fast-mod	е	
Symbol	Parameter	Min	Max	Unit
f _{SCL}	SCL clock frequency	0	400	kHz
t _{HD;STA}	Hold time (repeated) START condition	0.6	-	μs
t _{LOW}	Low period of the SCL clock	1.3	-	μs
t _{HIGH}	High period of the SCL clock	0.6	-	μs
t _{SU;STA}	Setup time for a repeated START condition	0.6	-	μs
t _{HD;DAT}	Data hold time	0 ¹⁵	_ 16	μs
t _{SU;DAT}	Data setup time	100 ¹⁷		ns
t _r	Rise time of both SDA and SCL signals	-	300 (for C = 400pF)	ns
t _f	Fall time of both SDA and SCL signals	-	300 (for C = 400pF)	ns
t _{SU;STO}	Setup time for STOP condition	0.6	-	μs
t _{BUF}	Bus-free time between a STOP and START condition	1.3	-	μs
t _{VD;DAT}	Data valid time	-	0.9 16	μs
t _{VD;ACK}	Data valid acknowledge time	-	0.9 16	μs
V _{nL}	Noise margin at the low level	0.1 VCC	-	V
V _{nH}	Noise margin at the high level	0.2 VCC	-	V

Table 17: ZED-F9H-01B I2C peripheral timings and specifications

¹⁵ External device must provide a hold time of at least one transition time (max 300 ns) for the SDA signal (with respect to the min Vih of the SCL signal) to bridge the undefined region of the falling edge of SCL.

The maximum t_{HD;DAT} must be less than the maximum t_{VD;DAT} or t_{VD;ACK} with a maximum of 0.9 μs by a transition time. This maximum must only be met if the device does not stretch the LOW period (tLOW) of the SCL signal. If the clock stretches the SCL, the data must be valid by the set-up time before it releases the clock.

When the I2C peripheral is stretching the clock, the t_{SU;DAT} of the first bit of the next byte is 62.5 ns.

The I2C interface is only available with the UART default mode. If the SPI interface is selected by using D_SEL = 0, the I2C interface is not available.

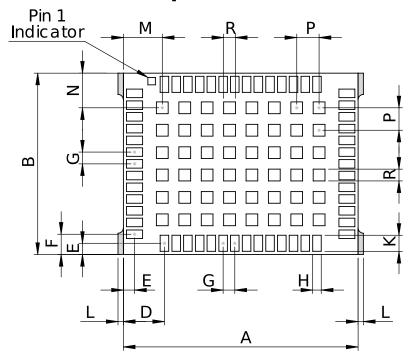
5.4 USB

The USB 2.0 FS (full speed, 12 Mbit/s) interface can be used for host communication. Due to the hardware implementation, it may not be possible to certify the USB interface. The V_USB pin supplies the USB interface.

5.5 Default interface settings

Interface	Settings	
UART1 output	38400 baud, 8 bits, no parity bit, 1 stop bit.	
	NMEA protocol with GGA , GLL , GSA , GSV , RMC , VTG , TXT messages are output by default.	
	UBX protocol is enabled by default but no output messages are enabled by default.	
	RTCM 3.3 protocol output is not supported.	
UART1 input	38400 baud, 8 bits, no parity bit, 1 stop bit.	
	UBX, NMEA and RTCM 3.3 input protocols are enabled by default.	
UART2 output	38400 baud, 8 bits, no parity bit, 1 stop bit.	
	UBX protocol cannot be enabled.	
	RTCM 3.3 protocol output is not supported.	
	NMEA protocol is disabled by default.	
UART2 input	38400 baud, 8 bits, no parity bit, 1 stop bit.	
	UBX protocol cannot be enabled and will not receive UBX input messages.	
	RTCM 3.3 protocol is enabled by default.	
	NMEA protocol is disabled by default.	
USB	Default messages activated as in UART1. Input/output protocols available as in UART1.	
I2C	Available for communication in the Fast-mode with an external host CPU in peripheral mode only. Default messages activated as in UART1. Input/output protocols available as in UART1. Maximum bit rate 400 kb/s.	
SPI	Allow communication to a host CPU, operated in peripheral mode only. Default messages activated as in UART1. Input/output protocols available as in UART1. SPI is not available unless D_SEL pin is set to low (see section D_SEL interface in Integration manual [1]).	

Table 18: Default interface settings


Refer to the applicable Interface description [2] for information about further settings.

By default, the ZED-F9H-01B outputs NMEA messages that include satellite data for all GNSS bands being received. This results in a high NMEA output load for each navigation period. Make sure the UART baud rate used is sufficient for the selected navigation rate and the number of GNSS signals being received.

6 Mechanical specification

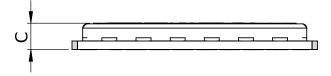


Figure 6: ZED-F9H-01B mechanical drawing

Symbol	Min (mm)	Typical (mm)	Max (mm)
A	21.80	22.00	22.20
В	16.80	17.00	17.20
С	2.20	2.40	2.60
D	3.65	3.85	4.05
Е	0.85	1.05	1.25
F	1.70	1.90	2.10
G	1.05	1.10	1.15
Н	0.70	0.80	0.96
К	1.20	1.50	1.80
М	3.45	3.65	3.85
N	3.05	3.25	3.45
Р	2.05	2.10	2.15

Symbol	Min (mm)	Typical (mm)	Max (mm)
R	0.88	1.10	1.32
L	0.00		0.30
Weight		1.8 g	

Table 19: ZED-F9H-01B mechanical dimensions

The mechanical picture of the de-paneling residual tabs (L) is an approximate representation. The shape and position may vary.

Take the size of the de-paneling residual tabs into account when designing the component keep-out area.

7 Qualifications and approvals

Quality and reliability	
Product qualification	Qualified according to ISO 16750
Chip qualification	Modules are based on AEC-Q100 qualified GNSS chips
Manufacturing	Manufactured at ISO/TS 16949 certified sites
Environmental	
RoHS compliance	Yes
Moisture sensitivity level (MSL) ^{18 19}	4
Type approvals	
European RED certification (CE)	Declaration of Conformity (DoC) is available on the u-blox website.
UK conformity assessment (UKCA)	Yes

Table 20: Qualifications and approvals

¹⁸ For the MSL standard, see IPC/JEDEC J-STD-020 and J-STD-033, available on www.jedec.org

¹⁹ For more information regarding moisture sensitivity levels, labelling, storage and drying, see the Product packaging reference guide [3]

8 Labeling and ordering information

This section provides information about product labeling and ordering. For information about moisture sensitivity level (MSL), product handling and soldering see the Integration manual [1].

8.1 Product labeling

The labeling of the ZED-F9H-01B modules provides product information and revision information. For more information contact u-blox sales.

8.2 Explanation of product codes

Three product code formats are used in the ZED-F9H-01B labels. The **Product name** used in documentation such as this data sheet identifies all u-blox products, independent of packaging and quality grade. The **Ordering code** includes options and quality, while the **Type number** includes the hardware and firmware versions.

Table 21 below details these three formats.

Format	Structure	Product code
Product name	PPP-TGV	ZED-F9H
Ordering code	PPP-TGV-NNQ	ZED-F9H-01B
Type number	PPP-TGV-NNQ-XX	ZED-F9H-01B-00

Table 21: Product code formats

The parts of the product code are explained in Table 22.

Code	Meaning	Example
PPP	Product family	ZED
TG	Platform	F9 = u-blox F9
V	Variant	H = Heading
NNQ	Option / Quality grade	NN: Option [0099]
		Q: Grade, A = Automotive, B = Professional
XX	Product detail	Describes hardware and firmware versions

Table 22: Part identification code

8.3 Ordering codes

Ordering code	Product	Remark
ZED-F9H-01B	ZED-F9H	Shipped with firmware FW 1.00 HDG 1.13

Table 23: Product ordering codes

Product changes affecting form, fit or function are documented by u-blox. For a list of Product Change Notifications (PCNs) see our website at: https://www.u-blox.com/en/product-resources.

Related documents

- [1] ZED-F9H Integration manual UBX-19030120
- [2] HDG 1.13 Interface description UBX-21025013
- [3] Product packaging reference guide UBX-14001652
- [4] Radio Resource LCS Protocol (RRLP), (3GPP TS 44.031 version 11.0.0 Release 11)
- [5] ZED-F9P Moving Base application note, UBX-19009093

For regular updates to u-blox documentation and to receive product change notifications please register on our homepage https://www.u-blox.com.

Revision history

Revision	Date	Status / comments
R01	02-Jun-2020	Early production information
		For document legacy revisions see UBX-19027170
R02	18-Jun-2021	Production information
R03	16-Feb-2022	Voltage ramp on VCC value added in Absolute maximum ratings table. V_BCKP general update. Related documents update
R04	24-Mar-2023	Updated I2C and SPI timing specifications in section Communications interfaces
		Updated VCC_RF output current in table Absolute maximum ratings
		Updated backup current in table Operating conditions
		Added timepulse footnote in table Operating conditions
R05	21-Mar-2024	Updated sections:
		Performance
		Mechanical specifications updated with information on de-paneling residual tabs
		Qualifications and approvals
		 Information on moisture sensitivity level has been moved from the Integration manual to chapter Qualifications and approvals
		Editorial changes throughout the document

Contact

u-blox AG

Address: Zürcherstrasse 68

8800 Thalwil Switzerland

For further support and contact information, visit us at www.u-blox.com/support.